Log in

Mesoporous silica materials functionalized with folic acid: preparation, characterization and release profile study with methotrexate

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ordered mesoporous silica materials exhibit potential features to be used as controlled drug delivery systems, including biocompatibility, textural and structural properties. In this paper, ordered mesoporous materials SBA-15, SBA-16 and MCM-41, which present different morphologies, pore sizes and array of mesopores (2D hexagonal, 3D cubic and 2D hexagonal, respectively), were synthesized, functionalized with folic acid by post-synthesis grafting and loaded with the anticancer agent methotrexate. The drug loading and its release kinetics profile were compared between all materials. The mesoporous silicas were characterized through thermogravimetric analysis, CHN elemental analysis, Fourier transform infrared spectroscopy, small-angle X-ray scattering, N2 adsorption, zeta potential, scanning electron microscopy and transmission electron microscopy in order to evaluate their physical–chemical properties. The interactions between methotrexate and the materials’ surface were systematically evaluated using X-ray photoelectron spectroscopy. The results showed the drug release kinetic might be controlled by the synthesis procedure and the degree of surface functionalization of the mesoporous silica.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Safari J, Zarnegar Z (2014) Advanced drug delivery systems: nanotechnology of health design A review. J Saudi Chem Soc 18:85–99. doi:10.1016/j.jscs.2012.12.009

    Article  Google Scholar 

  2. Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41:3679–3698. doi:10.1039/c2cs15308d

    Article  Google Scholar 

  3. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288. doi:10.1016/j.addr.2008.03.012

    Article  Google Scholar 

  4. Kwon S, Singh RK, Perez RA et al (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4:2041731413503357. doi:10.1177/2041731413503357

    Article  Google Scholar 

  5. Mamaeva V, Sahlgren C, Lindén M (2013) Mesoporous silica nanoparticles in medicine—recent advances. Adv Drug Deliv Rev 65:689–702. doi:10.1016/j.addr.2012.07.018

    Article  Google Scholar 

  6. Wang S (2009) Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater 117:1–9. doi:10.1016/j.micromeso.2008.07.002

    Article  Google Scholar 

  7. Roggers R, Kanvinde S, Boonsith S, Oupický D (2014) The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal. AAPS PharmSciTech 15:1163–1171. doi:10.1208/s12249-014-0142-7

    Article  Google Scholar 

  8. Moritz M, Geszke-Moritz M (2015) Mesoporous materials as multifunctional tools in biosciences: principles and applications. Mater Sci Eng C 49:114–151. doi:10.1016/j.msec.2014.12.079

    Article  Google Scholar 

  9. Moritz M, Łaniecki M (2011) Modified SBA-15 as the carrier for metoprolol and papaverine: adsorption and release study. J Solid State Chem 184:1761–1767. doi:10.1016/j.jssc.2011.05.015

    Article  Google Scholar 

  10. Andrade GF, Soares DCF, Almeida RKDS, Sousa EMB (2012) Mesoporous silica SBA-16 functionalized with alkoxysilane groups: preparation, characterization, and release profile study. J Nanomater 2012:1–10. doi:10.1155/2012/816496

    Google Scholar 

  11. Doadrio JC, Sousa EMB, Izquierdo-Barba I et al (2006) Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J Mater Chem 16:462. doi:10.1039/b510101h

    Article  Google Scholar 

  12. Alexa IF, Pastravanu CG, Ignat M, Popovici E (2013) A comparative study on long-term MTX controlled release from intercalated nanocomposites for nanomedicine applications. Colloids Surf B Biointerfaces 106:135–139. doi:10.1016/j.colsurfb.2013.01.022

    Article  Google Scholar 

  13. Pang J, Zhao L, Zhang L et al (2013) Folate-conjugated hybrid SBA-15 particles for targeted anticancer drug delivery. J Colloid Interface Sci 395:31–39

    Article  Google Scholar 

  14. Thomas MJK, Slipper I, Walunj A et al (2010) Inclusion of poorly soluble drugs in highly ordered mesoporous silica nanoparticles. Int J Pharm 387:272–277. doi:10.1016/j.ijpharm.2009.12.023

    Article  Google Scholar 

  15. Treccani L, Yvonne Klein T, Meder F et al (2013) Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater 9:7115–7150. doi:10.1016/j.actbio.2013.03.036

    Article  Google Scholar 

  16. Knežević NŽ, Durand J-O (2015) Targeted treatment of cancer with nanotherapeutics based on mesoporous silica nanoparticles. ChemPlusChem 80:26–36. doi:10.1002/cplu.201402369

    Article  Google Scholar 

  17. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162. doi:10.1016/S0169-409X(99)00062-9

    Article  Google Scholar 

  18. Fan J, Fang G, Wang X et al (2011) Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles. Nanotechnology 22:455102. doi:10.1088/0957-4484/22/45/455102

    Article  Google Scholar 

  19. Rosenholm JM, Meinander A, Peuhu E et al (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3:197–206. doi:10.1021/nn800781r

    Article  Google Scholar 

  20. Lu J, Li Z, Zink JI, Tamanoi F (2012) In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine 8:212–220. doi:10.1016/j.nano.2011.06.002

    Article  Google Scholar 

  21. Lu Y, Low PS (2012) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 64:342–352. doi:10.1016/j.addr.2012.09.020

    Article  Google Scholar 

  22. Pang J, Zhao L, Zhang L et al (2013) Folate-conjugated hybrid SBA-15 particles for targeted anticancer drug delivery. J Colloid Interface Sci 395:31–39. doi:10.1016/j.jcis.2012.12.016

    Article  Google Scholar 

  23. Nzila A, Okombo J, Becker RP et al (2010) Anticancer agents against malaria: time to revisit? Trends Parasitol 26:125–129. doi:10.1016/j.pt.2009.12.002

    Article  Google Scholar 

  24. Kozub P, Simaljakova M (2011) Systemic therapy of psoriasis: methotrexate. Bratisl Lek Listy 112:390–394

    Google Scholar 

  25. Vadia N, Rajput S (2012) Study on formulation variables of methotrexate loaded mesoporous MCM-41 nanoparticles for dissolution enhancement. Eur J Pharm Sci 45:8–18. doi:10.1016/j.ejps.2011.10.016

    Article  Google Scholar 

  26. Barberá A, Lorenzo N, Domínguez C (2012) Current treatment of rheumatoid arthritis. Perspectives for the development of antigen-specific therapies. Biotecnología Aplicada 29:146–154

  27. Zhao D (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552. doi:10.1126/science.279.5350.548

    Article  Google Scholar 

  28. Zhao D, Huo Q, Feng J et al (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 7863:6024–6036

    Article  Google Scholar 

  29. Slowing II, Vivero-Escoto JL, Trewyn BG, Lin VS-Y (2010) Mesoporous silica nanoparticles: structural design and applications. J Mater Chem 20:7924. doi:10.1039/c0jm00554a

    Article  Google Scholar 

  30. Smith JL, Herman RG, Terenna CR et al (2004) Sorption of nitrogen bases and XPS study of mesoporous solid acid SBA-15. J Phys Chem A 108:39–46. doi:10.1021/jp0305990

    Article  Google Scholar 

  31. Hernández-Morales V, Nava R, Acosta-Silva YJ et al (2012) Adsorption of lead (II) on SBA-15 mesoporous molecular sieve functionalized with -NH2 groups. Microporous Mesoporous Mater 160:133–142. doi:10.1016/j.micromeso.2012.05.004

    Article  Google Scholar 

  32. Ferraris S, Perero S, Vern E et al (2011) Surface functionalization of Ag–nanoclusters–silica composite films for biosensing. Mater Chem Phys 130:1307–1316. doi:10.1016/j.matchemphys.2011.09.019

    Article  Google Scholar 

  33. Zhao X, Lu G, Hu X (2000) Characterization of the structural and surface properties of chemically modified MCM-41 material. Microporous Mesoporous Mater 41:37–47. doi:10.1016/S1387-1811(00)00262-6

    Article  Google Scholar 

  34. Vrancken K, Possemiers K, Van Der Voort P, Vansant E (1995) Surface modification of silica gels with aminoorganosilanes. Colloids Surf A Physicochem Eng Asp 98:235–241. doi:10.1016/0927-7757(95)03119-X

    Article  Google Scholar 

  35. Hanu LG, Hanu AM, Popovici E, Timpu D (2004) Nanosiliceous matrix for drug incapsulation. Romanian J Phys 49:817–822

    Google Scholar 

  36. Andersson J, Rosenholm J, Areva S, Lindén M (2004) Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem Mater 16:4160–4167. doi:10.1021/cm0401490

    Article  Google Scholar 

  37. Balas F, Manzano M, Horcajada P, Vallet-Regi M (2006) Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc 128:8116–8117. doi:10.1021/ja062286z

    Article  Google Scholar 

  38. Qu F, Zhu G, Lin H et al (2006) A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials. J Solid State Chem 179:2027–2035. doi:10.1016/j.jssc.2006.04.002

    Article  Google Scholar 

  39. De Sousa A, de Souza KC, Leite PM da S, et al (2014) A dual-functional [SBA-15/Fe3O4/P(N-iPAAm)] hybrid system as a potential nanoplatform for biomedical application. doi:10.1039/c2ce25395j

  40. Kleitz F, Kim TW, Ryoo R (2006) Phase domain of the cubic Im3m mesoporous silica in the EO 106PO70EO106-butanol-H2O system. Langmuir 22:440–445. doi:10.1021/la052047+

    Article  Google Scholar 

  41. Andrade GF, Soares DCF, dos Santos RG, Sousa EMB (2013) Mesoporous silica SBA-16 nanoparticles: synthesis, physicochemical characterization, release profile, and in vitro cytocompatibility studies. Microporous Mesoporous Mater 168:102–110. doi:10.1016/j.micromeso.2012.09.034

    Article  Google Scholar 

  42. Kim JM, Chang SM, Kong SM et al (2009) Control of hydroxyl group content in silica particle synthesized by the sol-precipitation process. Ceram Int 35:1015–1019. doi:10.1016/j.ceramint.2008.04.011

    Article  Google Scholar 

  43. Jaroniec C, Gilpin R, Jaroniec M (1997) Adsorption and thermogravimetric studies of silica-based amide bonded phases. J Phys 44242:6861–6866. doi:10.1021/jp964002a

    Google Scholar 

  44. Vora A, Riga A, Dollimore D, Alexander KS (2002) Thermal stability of folic acid. Thermochim Acta 392–393:209–220. doi:10.1016/S0040-6031(02)00103-X

    Article  Google Scholar 

  45. El-Wahed MGA, Refat MS, El-Megharbel SM (2008) Synthesis, spectroscopic and thermal characterization of some transition metal complexes of folic acid. Spectrochim Acta Part A Mol Biomol Spectrosc 70:916–922. doi:10.1016/j.saa.2007.10.008

    Article  Google Scholar 

  46. Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Sydney

    Book  Google Scholar 

  47. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57:603–619. doi:10.1351/pac198557040603

    Article  Google Scholar 

  48. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic–inorganic nanocomposite materials. Chem Mater 13:3169–3183. doi:10.1021/cm0101069

    Article  Google Scholar 

  49. Sakamoto Y, Kaneda M, Terasaki O et al (2000) Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 408:449–453. doi:10.1038/35044040

    Article  Google Scholar 

  50. Beck JS, Vartuli JC, Roth WJ et al (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. doi:10.1021/ja00053a020

    Google Scholar 

  51. Kaliaguine S (1996) Serge Kaliaguine D6partement de g6nie chimique, Universit~Laval, Ste-Foy, Qu6bec, G1K 7P4, Canada 1. 102:191–230

  52. Ambrogi V, Donnadio A, Pietrella D et al (2014) Chitosan films containing mesoporous SBA-15 supported silver nanoparticles for wound dressing. J Mater Chem B 2:6054. doi:10.1039/C4TB00927D

    Article  Google Scholar 

  53. Lindberg B, Maripuu R, Siegbahn K et al (1983) ESCA Studies of heparinized and related surfaces. J Colloid Interface Sci 95:308–321. doi:10.1016/0021-9797(83)90190-X

    Article  Google Scholar 

  54. Kallury KMR, Macdonald PM, Thompson M (1994) Effect of surface water and base catalysis on the silanization of silica by (aminopropyl) alkoxysilanes studied by X-ray photoelectron spectroscopy and 13C cross-polarization/magic angle spinning nuclear magnetic resonance. Langmuir 10:492–499

    Article  Google Scholar 

  55. Manzano M, Aina V, Areán CO et al (2008) Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J 137:30–37. doi:10.1016/j.cej.2007.07.078

    Article  Google Scholar 

  56. Korsmeyer RW, Gurny R, Doelker E et al (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35. doi:10.1016/0378-5173(83)90064-9

    Article  Google Scholar 

  57. Costa P, Sousa Lobo JM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133. doi:10.1016/S0928-0987(01)00095-1

    Article  Google Scholar 

  58. Kumar S, Singh AK, Prajapati SK, Singh VK (2012) Formulation and evaluation of once daily sustained release matrix tablets of aceclofenac using natural gums. J Drug Deliv Ther 2:16–24

    Google Scholar 

  59. Horcajada P, Rámila A, Pérez-Pariente J, Vallet-Regí M (2004) Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater 68:105–109. doi:10.1016/j.micromeso.2003.12.012

    Article  Google Scholar 

  60. Izquierdo-Barba I, Sousa E, Doadrio JC et al (2009) Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15. J Sol Gel Sci Technol 50:421–429. doi:10.1007/s10971-009-1932-3

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for all financial support, and the Microscopy Center of the Federal University of Minas Gerais, Belo Horizonte, Brazil (http://www.microscopia.ufmg.br).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edésia Martins Barros de Sousa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, L.B.O., Bravo, I.J.G., Macedo, W.A.A. et al. Mesoporous silica materials functionalized with folic acid: preparation, characterization and release profile study with methotrexate. J Sol-Gel Sci Technol 77, 186–204 (2016). https://doi.org/10.1007/s10971-015-3844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3844-8

Keywords

Navigation