Log in

Evaluation of the structural, optical and photocatalytic properties of nitrogen-fluorine co-doped TiO2 thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanostructured TiO2 films were synthesized by a modified sol–gel method using Pluronics P-123 (EO20PO70EO20) as templating agent, titanium n-butoxide [Ti(OC4H9)4] as inorganic precursor, and ammonium fluoride (NH4F) as the source of N and F dopant atoms in order to prepare sols of x(NF) TiO2 (x=2, 5, 10, 20 wt%). The thin film preparation was made by spin coating, followed by calcination at 400 °C. The as-prepared TiO2 and xNF-TiO2 films were characterized by XRD, Raman spectroscopy, FTIR, TGA-DTA, SEM, UV–Vis diffuse reflectance spectroscopy and EPR. XRD and Raman spectroscopy show that the crystalline structure of these samples consists exclusively of the anatase phase. The band gap (E g ) values for the doped 10 and 20 NF-TiO2 film systems were found to be significantly smaller than those corresponding to the rest of the other TiO2 films. The photocatalytic properties of these films are investigated by following the degradation of methyl orange in aqueous solution under UV irradiation. The photodecomposition is mainly a direct function of the amount of NF present in the TiO2 matrix. The 20NF-TiO2 sample shows the highest activity of all the samples studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Herrmann JM (2005) Top Catal 34:49–65

    Article  CAS  Google Scholar 

  2. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  3. Peral J, Domenech X, Ollis DF (1997) J Chem Technol Biotechnol 70:117–140

    Article  CAS  Google Scholar 

  4. Ollis DF, Pelizzetti E, Serpone N (1991) Environ Sci Technol 25:1522–1529

    Article  CAS  Google Scholar 

  5. Habibi MH, Hassanzadeh A, Mahdavi S (2005) J Photochem Photobiol A Chem 172:89–96

    Article  CAS  Google Scholar 

  6. Zhang H, Banfield JF (2000) J Mater Res 15:437–448

    Article  CAS  Google Scholar 

  7. Kwak SY, Kim SH, Kim SS (2001) Environ Sci Technol 35:2388–2394

    Article  CAS  Google Scholar 

  8. Zheng J, Yu H, Li X, Zhang S (2008) Appl Surf Sci 254:1630–1635

    Article  CAS  Google Scholar 

  9. Yu JG, Zhou MH, Yu HG, Zhang S, Yu Y (2006) Mater Chem Phys 95:193–196

    Article  CAS  Google Scholar 

  10. Raileanu M, Crisan M, Dragan N, Crisan D, Galtayries A, Braileanu A, Ianculescu A, Teodorescu VS, Nitoi I, Anastasescu M (2009) J Sol-Gel Sci Technol 51:315–329

    Article  CAS  Google Scholar 

  11. Maeda M, Watanabe T (2006) J Electrochem Soc 153:C186–C189

    Article  CAS  Google Scholar 

  12. Obata K, Irie H, Hashimoto K (2007) Chem Phys 339:124–132

    Article  CAS  Google Scholar 

  13. Wong MS, Chou HP, Yang TS (2006) Thin Solid Films 494:244–249

    Article  CAS  Google Scholar 

  14. Pelaez M, Falaras P, Likodimos V, Kontosb AG, de la Cruz AA, O’shead K, Dionysiou DD (2010) Appl Catal B 99:378–387

    Article  CAS  Google Scholar 

  15. Zhang Z, Wang X, Long J, Gu Q, Ding Z, Fu X (2010) J Catal 276:201–214

    Article  CAS  Google Scholar 

  16. Li D, Haneda H, Hishita S, Ohashi N (2005) Mater Sci Eng B Solid 117:67–75

    Article  Google Scholar 

  17. Xu J, Ao Y, Fu D, Yuan C (2008) Appl Surf Sci 254:3033–3038

    CAS  Google Scholar 

  18. Mori K, Maki K, Kawasaki S, Yuan S, Yamashita H (2008) Chem Eng Sci 63:5066–5070

    Article  CAS  Google Scholar 

  19. Li D, Ohashi N, Hishita S, Kolodiazhnyi T, Haneda H (2005) J Solid State Chem 178:3293–3302

    Article  CAS  Google Scholar 

  20. Li D, Haneda H, Labhsetwar NK, Hishita S, Ohashi N (2005) Chem Phys Lett 401:579

    Article  CAS  Google Scholar 

  21. León-Ramos JA, Kibanova D, Santiago-Jacinto P, Mar-Santiago Y, Trejo-Valdez M (2011) J Sol-Gel Sci Technol 57:43–50

    Article  Google Scholar 

  22. Andronic L, Duta A (2007) Thin Solid Films 515:6294–6297

    Article  CAS  Google Scholar 

  23. Yu JC, Lin J, Lo D, Lam SK (2000) Langmuir 16:7304–7308

    Article  CAS  Google Scholar 

  24. Zhang J, Li M, Feng Z, Chen J, Li C (2006) J Phys Chem B 110:927–935

    Article  CAS  Google Scholar 

  25. Choi HC, Jung YM, Kim SB (2005) Vib Spectrosc 37:33–38

    Article  CAS  Google Scholar 

  26. Zhu KR, Zhang MS, Chen Q, Yin Z (2005) Phys Lett A 340:220–227

    Article  CAS  Google Scholar 

  27. Liu H, Yang W, Ma Y, Cao Y, Yao J, Zhang J, Hu T (2003) Langmuir 19:3001–3005

    Article  CAS  Google Scholar 

  28. Berger T, Sterrer M, Diwald O, Knôzinger E, Panayotov D, Thompson TL, Yates JT (2005) J Phys chem B 13:6061–6068

    Article  Google Scholar 

  29. Zhang Y, Li G, Wu Y, Luo Y, Zhang L (2005) J Phys Chem B 109:5478

    Article  CAS  Google Scholar 

  30. Yan M, Chen F, Zhang J, Anpo M (2005) J Phys Chem B 109:8673–8678

    Article  CAS  Google Scholar 

  31. Kontos AI, Kontos AG, Raptis YS, Falaras P (2008) Phys Stat Sol 2:83–85

    CAS  Google Scholar 

  32. Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17:6349–6353

    Article  CAS  Google Scholar 

  33. Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) J Phys Chem B 109:11414–11419

    Article  CAS  Google Scholar 

  34. Yu JG, **ujian Z, Qingnan Z (2000) Thin Solid Films 379:7

    Article  CAS  Google Scholar 

  35. Zhao D, Hou Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  36. Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD (2000) Chem Mater 12:2448–2456

    Article  CAS  Google Scholar 

  37. Yang K, Dai Y, Huang B, Han S (2000) J Phys Chem B 110:24011–24014

    Article  Google Scholar 

  38. Feng W, Nansheng D, Helin H (2000) Chemosphere 41:1233–1238

    Article  CAS  Google Scholar 

  39. Baiocchi C, Brussino MC, Pramauro E, Prvot AB, Palmisano L, Marci G (2002) Int J Mass Spectrom 214:247–256

    Article  CAS  Google Scholar 

  40. Guettai N, Amar HA (2005) Desalination 185:427–437

    Article  CAS  Google Scholar 

  41. Rashed MN, El-Amin AA (2007) Int J Phys Sci 2:73–81

    Google Scholar 

  42. Sonawane RS, Kale BB, Dongare MK (2004) Mater Chem Phys 85:52–57

    Article  CAS  Google Scholar 

  43. Fox MA, Dulay MT (1993) Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  44. Bizarro M, Tapia-Rodriguez MA, Ojeda ML, Alonso JC, Ortiz A (2009) Appl Surf Sci 255:6274–6278

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is dedicated to the memory of Dr. Armando Ortiz Rebollo who made valuable contributions to this work in life. The authors wish to thank A. Tejeda and O. Novelo, for technical assistance. This work was partially supported by DGAPA UNAM under Projects: IN116109-2, IN109507-19, IA100811-1 and by the National Science and Technology Council of Mexico (CONACYT) under Project No. 83659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monserrat Bizarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojeda, M.L., Bizarro, M. & Campero, A. Evaluation of the structural, optical and photocatalytic properties of nitrogen-fluorine co-doped TiO2 thin films. J Sol-Gel Sci Technol 60, 108–115 (2011). https://doi.org/10.1007/s10971-011-2561-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2561-1

Keywords

Navigation