Log in

Low temperature nanostructured lithium titanates: controlling the phase composition, crystal structure and surface area

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Low temperature lithium titanate compounds (i.e., Li4Ti5O12 and Li2TiO3) with nanocrystalline and mesoporous structure were prepared by a straightforward aqueous particulate sol–gel route. The effect of Li:Ti molar ratio was studied on crystallisation behaviour of lithium titanates. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders were crystallised at the low temperature of 500 °C and the short annealing time of 1 h. Moreover, it was found that Li:Ti molar ratio and annealing temperature influence the preferable orientation growth of the lithium titanate compounds. Transmission electron microscope (TEM) images showed that the average crystallite size of the powders annealed at 400 °C was in the range 2–4 nm and a gradual increase occurred up to 10 nm by heat treatment at 800 °C. Field emission scanning electron microscope (FE-SEM) analysis revealed that the deposited thin films had mesoporous and nanocrystalline structure with the average grain size of 21–28 nm at 600 °C and 49–62 nm at 800 °C depending upon the Li:Ti molar ratio. Moreover, atomic force microscope (AFM) images confirmed that the lithium titanate films had columnar like morphology at 600 °C, whereas they showed hill-valley like morphology at 800 °C. Based on Brunauer–Emmett–Taylor (BET) analysis, the synthesized powders showed mesoporous structure containing pores with needle and plate shapes. The surface area of the powders was enhanced by increasing Li:Ti molar ratio and reached as high as 77 m2/g for the ratio of Li:Ti = 75:25 at 500 °C. This is one of the smallest crystallite size and the highest surface areas reported in the literature, and the materials could be used in many applications such as rechargeable lithium batteries and tritium breeding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Du Pasquier A, Laforgue A, Simon P (2004) J Power Sources 125:95

    Article  CAS  Google Scholar 

  2. Guerfi A, Sevigny S, Lagace M, Hovington P, Kinoshita K, Zaghib K (2003) J Power Sources 119:88

    Article  Google Scholar 

  3. Prosini PP, Mancini R, Petrucci L, Contini V, Villano P (2001) Solid State Ionics 144:185

    Article  CAS  Google Scholar 

  4. Sannier L, Bouchet R, Santinacci L, Grugeon S, Tarascon JM (2004) J Electrochem Soc 151:A873

    Article  CAS  Google Scholar 

  5. Ohzuku T, Ueda A, Yamamoto N (1995) J Electrochem Soc 142:1431

    Article  CAS  Google Scholar 

  6. Masatoshi M, Satoshi U, Eriko Y, Keiji K, Shinji I (2001) J Power Sources 101:53

    Article  Google Scholar 

  7. Takai S, Kamata M, Fu**e S, Yoneda K, Kanda K, Esata T (1999) Solid State Ionics 123:165

    Article  CAS  Google Scholar 

  8. Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nat Mater 4:366

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Kavan L, Gratzel M (2002) Electrochem Solid State Lett 5:A39

    Article  CAS  Google Scholar 

  10. Kavan L, Prochazka J, Spitler TM, Kalbac M, Zukalova MT, Drezen T, Gratzel M (2003) J Electrochem Soc 150:A1000

    Article  CAS  Google Scholar 

  11. Amatucci GG, Badway F, Du Pasquier A, Zheng T (2001) J Electrochem Soc 148:A930

    Article  CAS  Google Scholar 

  12. Hao YJ, Lai OY, Liu DQ, Xu ZU, Ji XY (2005) Mater Chem Phys 94:382

    Article  CAS  Google Scholar 

  13. Hao YJ, Lai OY, Xu Z, Liu X, Ji X (2005) Solid State Ionics 176:1201

    Article  CAS  Google Scholar 

  14. Hao YJ, Lai OY, Lu YZ, Wang HL, Chen YD, Ji XY (2006) J Power Sources 158:1358

    Article  CAS  Google Scholar 

  15. Li J, Tang Z, Zhang Z (2005) Electrochem Commun 7:894

    Article  CAS  Google Scholar 

  16. Kim HJ, Oh MH, Son WK, Kim TI, Parki SG (2006) IEEE 8th international conference on properties & applications of dielectric materials, vol 1–2, p 464

  17. Jiang C, Zhou Y, Honma I, Kudo T, Zhou H (2007) J Power Sources 166:514

    Article  CAS  Google Scholar 

  18. Roux N, Avon J, Floreancig A, Mougin J, Rasneur B, Ravel S (1996) J Nucl Mater 233–237:1431

    Article  Google Scholar 

  19. Lulewicz JD, Roux N (2002) J Nucl Mater 803–806:307

    Google Scholar 

  20. Tsuchiya K, Kawamura H (2000) J Nucl Mater 283–287:1380

    Article  Google Scholar 

  21. Tsuchiya K, Kawamura H, Uchida M, Casadio S, Alvani C, Ito Y (2003) Fusion Eng Des 69:449

    Article  CAS  Google Scholar 

  22. Tsuchiya K, Kawamura H, Fuchinoue K, Sawada H, Watarumi K (1998) J Nucl Mater 258–263:1985

    Article  Google Scholar 

  23. Wu X, Wen Z, Han J, Xu X, Lin B (2008) Fusion Eng Des 83:112

    Article  CAS  Google Scholar 

  24. Renoult O, Boilot JP, Korb JP, Boncoeur M (1995) J Nucl Mater 223:126

    Article  CAS  ADS  Google Scholar 

  25. Alvani C, Carconi PL, Casadio S, Contini V, Dibartolomeo A, Pierdominici F, Deptula A, Lagos S, Nannetti CA (2001) J Nucl Mater 289:303

    Article  CAS  ADS  Google Scholar 

  26. Deptula A, Olczak T, Lada W, Sartowska B, Chmielewski AG (2003) J Sol-Gel Sci Technol 26:207

    Article  CAS  Google Scholar 

  27. Mohammadi MR, Cordero-Cabrera MC, Ghorbani M, Fray DJ (2006) J Sol-Gel Sci Technol 40:15

    Article  CAS  Google Scholar 

  28. Mohammadi MR, Cordero-Cabrera MC, Fray DJ, Ghorbani M (2006) Sens Actuators B Chem 120:86

    Article  Google Scholar 

  29. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, London, p 99

    Google Scholar 

  30. Jarcho M, Bolen CH, Doremus RH (1976) J Mater Sci 11:2027

    Article  CAS  ADS  Google Scholar 

  31. Mohammadi MR, Fray DJ, Mohammadi A (2008) Microporous Mesoporous Mater 112:392

    Article  CAS  Google Scholar 

  32. Malvern Instruments (2003) DST customer training manual for zeta potential, chap 6. Malvern Instrument Company, England

  33. Ivanova T, Harizanova A, Surtchev M (2002) Mater Lett 55:327

    Article  CAS  Google Scholar 

  34. Socrates G (1994) Infrared characteristic group frequencies: tables and charts. Wiley, England, pp 6, 62, 237

  35. Phuruangrat A, Thongtem T, Thongtem S (2007) J Ceram Process Res 8:450

    Google Scholar 

  36. Kleykamp H (2002) Fusion Eng Des 61–62:361

    Article  Google Scholar 

  37. Mergos JA, Dervos CT (2009) Materials Charact 60:848

    Article  CAS  Google Scholar 

  38. Mohammadi MR, Ghorbani M, Cordero-Cabrera MC, Fray DJ (2007) J Mater Sci 42:4976

    Article  CAS  ADS  Google Scholar 

  39. Afanasiev P, Geantet C (1995) Mater Chem Phys 41:18

    Article  CAS  Google Scholar 

  40. Stern KH (2000) High temperature properties and thermal decomposition of inorganic salts with oxyanions. CRC press, Boca Raton, pp 145–146

    Book  Google Scholar 

  41. Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corporation, USA, pp 55–58

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Mr. David Nicol for his help with TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, M.R., Fray, D.J. Low temperature nanostructured lithium titanates: controlling the phase composition, crystal structure and surface area. J Sol-Gel Sci Technol 55, 19–35 (2010). https://doi.org/10.1007/s10971-010-2209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2209-6

Keywords

Navigation