Log in

Aminosilane as an effective binder for hydroxyapatite-gelatin nanocomposites

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Aminosilane has been explored as an alternative chemical linker to facilitate the binding and solidification of hydroxyapatite-gelatin nanocomposite at room temperature, which was synthesized using co-precipitation method in the presence of gelatin. This aminosilane treatment was found effective at low concentration (~25 μL/mL) and the solidification and dehydration of hydroxyapatite-gelatin slurry completes within hours depending on the amount of aminosilane. The resulting sample exhibits compressive strength of 133 MPa, about 40% higher than glutaraldehyde treated samples, and shows good biocompatibility based on cell adhesion, proliferation, alkaline phosphate synthesis, and mineralization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Green D, Walsh D, Mann S, Oreffo ROC (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 30:810–815

    Article  CAS  PubMed  Google Scholar 

  2. Boskey AL (1998) Will biomimetics provide new answers for old problems of calcified tissues? Calcif Tissue Int 63:179–182

    Article  CAS  PubMed  Google Scholar 

  3. Murugan R, Ramakrishna S (2005) Development of nanocomposites for bone grafting. Compos Sci Technol 65:2385–2406

    Article  CAS  Google Scholar 

  4. Wahl DA, Czernuszka JT (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 11:43–56

    CAS  PubMed  Google Scholar 

  5. Wu TJ, Huang HH, Lan CW, Lin CH, Hsu FY, Wang YJ (2004) Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite. Biomaterials 25:651–658

    Article  CAS  PubMed  Google Scholar 

  6. Chang MC, Ko CC, Douglas WH (2003) Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24:2853–2862

    Article  CAS  PubMed  Google Scholar 

  7. Chang MC, Ko CC, Douglas WH (2003) Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde. Biomaterials 24:3087–3094

    Article  CAS  PubMed  Google Scholar 

  8. Chang MC, Ko CC, Douglas WH (2005) Modification of hydroxyapatite/gelatin composite by polyvinylalcohol. J Mater Sci 40:2723–2727

    Article  CAS  ADS  Google Scholar 

  9. Chang MC, Douglas WH (2007) Cross-linkage of hydroxyapatite/gelatin nanocomposite using imide-based zero-length cross-linker. J Mater Sci Mater Med 18:2045–2051

    Article  CAS  PubMed  Google Scholar 

  10. Higashi S, Yamamuro T, Nakamura T, Ikada Y, Hyon SH, Jamshidi K (1986) Polymer hydroxyapatite composites for biodegradable bone fillers. Biomaterials 7:183–187

    Article  CAS  PubMed  Google Scholar 

  11. Yunos DM, Bretcanu O, Boccaccini AR (2008) Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 43:4433–4442

    Article  ADS  Google Scholar 

  12. Ko CC, Luo TJM, Ma A (2008) Hydroxyapatite/GEMOSIL nanocompsoite. In: Narayan R, Colombo P (eds) Advances in bioceramics and porous ceramics: ceramic engineering and science proceedings. Wiley, New York

    Google Scholar 

  13. Rao MS, Dubenko IS, Roy S, Ali N, Dave BC (2001) Matrix-assisted biomimetic assembly of ferritin core analogues in organosilica sol-gels. J Am Chem Soc 123:1511–1512

    Article  CAS  PubMed  Google Scholar 

  14. Anderson SI, Downes S, Perry CC, Caballero AM (1998) Evaluation of the osteoblast response to a silica gel in vitro. J Mater Sci Mater Med 9:731–735

    Article  CAS  PubMed  Google Scholar 

  15. Carturan G, Dal Toso R, Boninsegna S, Dal Monte R (2004) Encapsulation of functional cells by sol–gel silica: actual progress and perspectives for cell therapy. J Mater Chem 14:2087–2098

    Article  CAS  Google Scholar 

  16. Dupraz AMP, de Wijn JR, vanderMeer SAT, de Groot K (1996) Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites. J Biomed Mater Res 30:231–238

    Article  CAS  PubMed  Google Scholar 

  17. Parisuthiman D, Mochida Y, Duarte WR, Yamauchi M (2005) Biglycan modulates osteoblast differentiation and matrix mineralization. J Bone Miner Res 20:1878–1886

    Article  CAS  PubMed  Google Scholar 

  18. Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, San Diego

    Google Scholar 

  19. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  20. Helbig JM, Hutter M, Schonholzer UP (2000) Lack of syneresis during gelation of dense colloidal suspensions. J Colloid Interf Sci 222:46–50

    Article  CAS  Google Scholar 

  21. Lana SLB, Seddon AB (1998) X-ray diffraction studies of sol–gel derived ORMOSILs based on combinations of tetramethoxysilane and trimethoxysilane. J Sol-Gel Sci Technol 13:461–466

    Article  CAS  Google Scholar 

  22. Sousa RA, Reis RL, Cunha AM, Bevis MJ (2003) Coupling of HDPE/hydroxyapatite composites by silane-based methodologies. J Mater Sci Mater Med 14:475–487

    Article  CAS  PubMed  Google Scholar 

  23. Wang M, Bonfield W (2001) Chemically coupled hydroxyapatite-polyethylene composites: structure and properties. Biomaterials 22:1311–1320

    Article  CAS  PubMed  Google Scholar 

  24. Ko CC, Oyen M, FA M, Hu W-S (2006) Mechanical properties and cytochompatibility of biomimetic hydroxyapatite-gelatin nanocomposites. J Mater Res 21:3090–3098

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported, in part, by, NC Biotech Center Grant#2008-MRG-1108. CCK also thanks NIDCR K08DE018695 and American Association of Orthodontists Foundation for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzy-Jiun M. Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, TJ.M., Ko, CC., Chiu, CK. et al. Aminosilane as an effective binder for hydroxyapatite-gelatin nanocomposites. J Sol-Gel Sci Technol 53, 459–465 (2010). https://doi.org/10.1007/s10971-009-2114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2114-z

Keywords

Navigation