Log in

Natural and artificial radioactivity in volcanic ash soils of Jeju Island, Republic of Korea, and assessment of the radiation hazards: importance of soil properties

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, we investigated the activity concentrations of natural (226Ra, 232Th, 40K) and artificial (137Cs) radionuclides of soils in Jeju Island, and radiation hazard indices arising from the activity concentrations. The activity concentrations of 232Th and 40K based on soil color were in the order of black volcanic ash soils (BVAS) < very dark brown volcanic ash soils (VDBAS) < dark brown soils, but 137Cs was highest in BVAS, and 226Ra was lowest in VDBAS. The radiation hazard indices calculated from the activity concentrations were negligible. In terms of annual outdoor effective dose rate (AEDRout), the contribution of radionuclides to the soils was 137Cs (5.1%) < 40K (24.7%) < 226Ra (29.0%) < 232Th (41.3%), i.e., dominated by natural radionuclides, but contributions were dependent on soil properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. UNSCEAR (2000) Sources and effects of ionizing radiations. United Nations Scientific Committee on the effects of atomic radiation. United Nations, New York

    Google Scholar 

  2. Patra AC, Sahoo SK, Tripathi RM, Puranik VD (2013) Distribution of radionuclides in surface soils, Singhbhum Shear Zone, India and associated dose. Environ Monit Assess 185:7833–7843

    CAS  PubMed  Google Scholar 

  3. ICRP (1978) Radionuclide release into the environment: assessment of doses to man. International Commission on Radiological Protection. ICRP Publication 29, Ann. ICRP 2(2), Pergamon Press, Oxford, UK

  4. Taşkin H, Karavus M, Ay P, Topuzoglu A, Hidiroglu S, Karaha G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100:49–53

    PubMed  Google Scholar 

  5. Yang B, Zhou Q, Zhang J, Li Z, Li W, Tuo F (2019) Assessment of radioactivity level and associated radiation exposure in topsoil from eastern region of Shangrao Prefecture, China. J Radioanal Nucl Chem 319:297–302

    CAS  Google Scholar 

  6. Baeza A, Del Rio M, Jimenez A, Miro J, Paniagua J (1995) Influence of geology and soil particle size on the surface-area/volume activity ratio for natural radionuclides. J Radioanal Nucl Chem 189(2):289–299

    CAS  Google Scholar 

  7. Belivermis M, Kılıç Ö, Çotuk Y, Topcuoğlu S (2010) The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ Monit Assess 163:15–26

    CAS  PubMed  Google Scholar 

  8. Bara SV, Arora V, Chinnaesakki S, Sartandel SJ, Bajwa BS, Tripathi RM, Puranik VD (2012) Radiological assessment of natural and fallout radioactivity in the soil of Chamba and Dharamshala areas of Himachal Pradesh, India. J Radioanal Nucl Chem 291:769–776

    CAS  Google Scholar 

  9. Durusoy A, Yildirim M (2017) Determination of radioactivity concentrations in soil samples and dose assessment for Rize Province, Turkey. J Radiat Res Appl Sci 10:348–352

    CAS  Google Scholar 

  10. Forkapic S, Vasin J, Bikit I, Mrdja D, Bikit K, Milić S (2017) Correlations between soil characteristics and radioactivity content of Vojvodina soil. J Environ Radioact 166:104–111

    CAS  PubMed  Google Scholar 

  11. Hannan M, Wahid K, Nguyen N (2015) Assessment of natural and artificial radionuclides in Mission (Texas) surface soils. J Radioanal Nucl Chem 305:573–582

    CAS  Google Scholar 

  12. Jabbar T, Subhani MS, Khan K, Rashid A, Orfi SD, Khan AY (2003) Natural and fallout radionuclide concentrations in the environment of Islamabad. J Radioanal Nucl Chem 258(1):143–149

    CAS  Google Scholar 

  13. Janković M, Todorović D, Savanović M (2008) Radioactivity measurements in soil samples collected in the Republic of Srpska. Radiat Meas 43:1448–1452

    Google Scholar 

  14. Kannan V, Rajan MP, Iyengar MAR, Ramesh R (2002) Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry. Appl Radiat Isot 57:109–119

    CAS  PubMed  Google Scholar 

  15. Kapdan E, Varinlioglu A, Karahan G (2011) Radioactivity levels and health risks due to radionuclides in the soil of Yalova, Northwestern Turkey. Int J Environ Res 5(4):837–846

    CAS  Google Scholar 

  16. Karataşlı M, Turhan Ş, Varinlioğlu A, Yeğingil Z (2016) Natural and fallout radioactivity levels and radiation hazard evaluation in soil samples. Environ Earth Sci 75:424

    Google Scholar 

  17. Leung KC, Lau SY, Poon CB (1990) Gamma radiation dose from radionuclides in Hong Kong soil. J Environ Radioact 11:279–290

    CAS  Google Scholar 

  18. Öztürk BC, Çam NF, Yaprak G (2013) Reference levels of natural radioactivity and 137Cs in and around the surface soils of Kestanbol pluton in Ezine region of Çanakkale province, Turkey. J Environ Sci Health A 48(12):1522–1532

    Google Scholar 

  19. Saleh IH (2018) Depleted uranium residues, NORMs and 137Cs in the coastal zone soil of Musandam Peninsula, Hurmuz strait region, Sultanate of Oman. J Radiat Res Appl Sci 11(3):182–189

    CAS  Google Scholar 

  20. Sartandel SJ, Chinnaesakki S, Bara SV, Krishna NS, Vinod-Kumar A, Tripathi RM (2014) Assessment of natural and fallout radioactivity in soil samples of Visakhapatnam. J Radioanal Nucl Chem 299:337–342

    CAS  Google Scholar 

  21. Kim JH, Kim CS, Lim CS (2014) Assessment of radiation effective dose by naturally radionuclides in the soil of Busan. J Korea Acad Ind Coop Soc 15(6):3658–3666 (in Korean)

    Google Scholar 

  22. Seo BK, Sung JW, Kim HD, Lee DW (2001) Distribution of radioactivities of 226,228Ra, 137Cs and 40K in soil in Busan area. J Korea Assoc Radiat Prot 26(4):441–445 (in Korean)

    Google Scholar 

  23. Cha HJ, Park D, Park H, Kang MJ, Lee W, Choi GS, Cho YH, Chun KH, Lee HP, Shin HS, Lee CW (2004) Vertical distribution of 137Cs and 90Sr activities in the soils of Korea. J Korea Assoc Radiat Prot 29(3):197–204 (in Korean)

    CAS  Google Scholar 

  24. Cha HJ, Kang MJ, Chung GH, Choi GS, Lee CW (2006) Accumulation of 137Cs in soils on different bedrock geology and textures. J Radioanal Nucl Chem 267(2):349–355

    CAS  Google Scholar 

  25. Kim CS, Lee MH, Kim CK, Kim KH (1998) 90Sr, 137Cs, 239+240Pu and 238Pu concentrations in surface soils of Korea. J Environ Radioact 40:75–88

    CAS  Google Scholar 

  26. Lee MH, Lee CW, Boo BH (1997) Distribution and characteristics of 239,240Pu and 137Cs in the soil of Korea. J Environ Radioact 37:1–16

    CAS  Google Scholar 

  27. Kim KH, Yun JY, Yoo SH (1995) Distribution of Cs-137 and K-40 in Korean soils. Korean J Soil Sci Fertil 28(1):33–40

    CAS  Google Scholar 

  28. Yun JY, Choi SW, Kim CK, Moon JY, Rho BH (2005) Distribution and characteristics of radioactivity (232Th, 226Ra, 40K, 137Cs and 90Sr) and radiation in Korea. J Korea Assoc Radiat Prot 30(4):167–174

    CAS  Google Scholar 

  29. Koh GW, Park JB, Kang B, Kim G, Moon DC (2013) Volcanism in Jeju Island. J Geol Soc Korea 49(2):209–230 (in Korean)

    CAS  Google Scholar 

  30. Song KC, Yoo SH (1991) Andic properties of major soils in Cheju Island I. Characterization of volcanic ash soils by selective dissolution analysis. Korean J Soil Sci Fertil 24:85–94 (in Korean)

    Google Scholar 

  31. Moon KH, Lim HC, Hyun HN (2007) Distribution of soil series in Jeju Island by proximity and altitude. Korean J Soil Sci Fertil 40:221–228 (in Korean)

    Google Scholar 

  32. NAAS (2014) Taxonomical classification of Korean soils. National Academy of Agricultural Science, Wanju (in Korean)

    Google Scholar 

  33. Song KC, Kang HJ (2019) Taxonomical classification and genesis of Hoesu series, new series in Jeju Island. Korean J Soil Sci Fertil 52:40–50 (in Korean)

    Google Scholar 

  34. Sanusi MSM, Ramli AT, Wagiran H, Lee MH, Heryanshah A, Said MN (2016) Investigation of geological and soil influence on natural gamma radiation exposure and assessment of radiation hazards in Western Region, Peninsular Malaysia. Environ Earth Sci 75:485

    Google Scholar 

  35. Allison LE (1965) Organic carbon. In: Black CA (ed) Methods of soil analysis, part II, chemical and microbiological properties. American Society of Agronomy, Inc, Publisher, Madison, pp 1367–1378

    Google Scholar 

  36. Kilmer VJ, Alexander LT (1949) Methods of making mechanical analyses of soils. Soil Sci 68:15–24

    Google Scholar 

  37. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    CAS  PubMed  Google Scholar 

  38. Krieger VR (1981) Radioactivity of construction materials. Betonwerk Fertigteil Techn 47(5):468–473

    CAS  Google Scholar 

  39. ICRP (1990) Recommendations of the international commission on radiological protection. International Commission on Radiological Protection. ICRP Publication 60, Ann. ICRP 21(1–3), Pergamon Press, Oxford, UK

  40. Karahan G, Bayulken A (2000) Assessment of gamma dose rates around Istanbul (Turkey). J Environ Radioact 47:213–221

    CAS  Google Scholar 

  41. Jacob P, Paretzke HG, Rosenbaum H, Zankl M (1986) Effective dose equivalents for photon exposure from plane sources on the ground. Radiat Prot Dosim 14:299–310

    CAS  Google Scholar 

  42. Kocher DC, Sjoreen AL (1985) Dose-rate conversion factors for external exposure to photon emitters in soil. Health Phys 48:193–205

    CAS  PubMed  Google Scholar 

  43. Mehra R, Kumar S, Sonkawade R, Singh NP, Badhan K (2010) Analysis of terrestrial naturally occurring radionuclides in soil samples from some areas of Sirsa district of Haryana, India using gamma ray spectrometry. Environ Earth Sci 59:1159–1164

    CAS  Google Scholar 

  44. Saleh IH (2012) Radioactivity of 238U, 232Th, 40K, and 137Cs and assessment of depleted uranium in soil of the Musandam Peninsula, Sultanate of Oman. Turk J Eng Environ Sci 36:236–248

    CAS  Google Scholar 

  45. Ribeiro FCA, Silva JIR, Lima ESA, Amaral Sobrinho NMB, Perez DV, Lauria DC (2018) Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): radiological characterization and relationships to geological formation, soil types and soil properties. J Environ Radioact 182:34–43

    CAS  PubMed  Google Scholar 

  46. Ramasamy V, Suresh G, Meenakshisundaram V, Ponnusamy V (2011) Horizontal and vertical characterization of radionuclides and minerals in river sediments. Appl Radiat Isot 69:184–195

    CAS  PubMed  Google Scholar 

  47. Tsai TL, Liu CC, Chuang CY, Wei HJ, Men LC (2011) The effects of physico-chemical properties on natural radioactivity levels, associated dose rate and assessment of radiological hazard in the soil of Taiwan using statistical analysis. J Radioanal Nucl Chem 288:927–936

    CAS  Google Scholar 

  48. Baggoura B, Noureddine A, Benkrid M (1998) Level of natural and artificial radioactivity in Algeria. Appl Radiat Isot 49(7):867–873

    CAS  PubMed  Google Scholar 

  49. Hasan MK, Ismail M, Khan K, Akhter P (2011) Radioactivity levels and gamma-ray dose rate in soil samples from Kohistan (Pakistan) using gamma-ray spectrometry. Chin Phys Lett 28(1):1–4

    Google Scholar 

  50. Miah FK, Roy S, Touhiduzzaman M, Alam B (1998) Distribution of radionuclides in soil samples in and around Dhaka City. Appl Radiat Isot 49(1–2):133–137

    CAS  Google Scholar 

  51. Sam AK, Ahmed MMO, El Khangi FA, El Nigumi YO, Holm E (1997) Assessment of terrestrial gamma radiation in Sudan. Radiat Prot Dosim 71(2):141–145

    CAS  Google Scholar 

  52. Stevanović V, Gulan L, Milenković B, Valjarević A, Zeremski T, Penjišević I (2018) Environmental risk assessment of radioactivity and heavy metals in soil of Toplica region, South Serbia. Environ Geochem Health 40:2101–2118

    PubMed  Google Scholar 

  53. JCAC (1990) Environmental radiation monitoring data. Japan Chemical Analysis Center Data Management Division, Chiba

    Google Scholar 

  54. Hassan NM, Kim YJ, Jang J, Chang BU, Chae JS (2018) Comparative study of precise measurements of natural radionuclides and radiation dose using in situ and laboratory γ-ray spectroscopy techniques. Nat Sci Rep 8:14115

    CAS  Google Scholar 

  55. Arapis GD, Karandinos MG (2004) Migration of 137Cs in the soil of slo** semi-natural ecosystems in northern Greece. J Environ Radioact 77:133–142

    CAS  PubMed  Google Scholar 

  56. Dragović S, Gajić B, Dragović R, Janković-Mandić L, Slavković-Beškoski L, Mihailović N, Momčilović M, Ćujić M (2012) Edaphic factors affecting the vertical distribution of radionuclides in the different soil types of Belgrade, Serbia. J Environ Monit 14:127–137

    PubMed  Google Scholar 

  57. Hölgye Z, Malý M (2000) Sources, vertical distribution, and migration rates of 239, 240Pu, 238Pu, and 137Cs in grassland soil in three localities of central Bohemia. J Environ Radioact 47:135–147

    Google Scholar 

  58. Sigurgeirsson MA, Arnalds O, Palsson SE, Howard BJ, Gudnason K (2005) Radiocaesium fallout behaviour in volcanic soils in Iceland. J Environ Radioact 79(1):39–53

    CAS  PubMed  Google Scholar 

  59. Montes ML, Mercader RC, Taylor MA, Runco J, Desimoni J (2012) Assessment of natural radioactivity levels and their relationship with soil characteristics in undisturbed soils of the northeast of Buenos Aires province, Argentina. J Environ Radioact 105:30–39

    CAS  PubMed  Google Scholar 

  60. Patra AK, Sudhakar J, Ravi PM, James JP, Hegde AG, Joshi ML (2006) Natural radioactivity distribution in geological matrices around Kaiga environment. J Radioanal Nucl Chem 270(2):307–312

    CAS  Google Scholar 

  61. OECD (1979) Exposure to radiation from the natural radioactivity in building materials. Organization for Economic Cooperation and Development. Report by an NEA Group of Experts, Nuclear Energy Agency (NEA), OECD, Paris, France

  62. KINS (2017) Environmental radioactivity survey in Korea, vol 49. Korea Institute of Nuclear Safety. KINS/ER-028, Daejon, Korea (in Korean)

  63. Selvasekarapandian S, Sivakumar R, Manikandan NM, Meenakshisundaram V, Raghunath VM, Gajendran V (2000) Natural radionuclide distribution in soils of Gudalore, India. Appl Radiat Isot 52:299–306

    CAS  PubMed  Google Scholar 

  64. Agbalagba EO, Avwiri GO, Chad-Umoreh YE (2012) γ-Spectroscopy measurement of natural radioactivity and assessment of radiological hazard indices in soil samples from oil fields environment of Delta State, Nigeria. J Environ Radioact 109:64–70

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIER-2019-03-01-013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae-Woo Kang or Kyunghyun Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, TW., Park, WP., Han, YU. et al. Natural and artificial radioactivity in volcanic ash soils of Jeju Island, Republic of Korea, and assessment of the radiation hazards: importance of soil properties. J Radioanal Nucl Chem 323, 1113–1124 (2020). https://doi.org/10.1007/s10967-020-07024-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07024-9

Keywords

Navigation