Log in

Application of HDTMA-intercalated bentonites in water waste treatment for U(VI) removal

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Bentonite deposits in Slovakia are systematically investigated as potential adsorbents for wastewater and radioactive waste treatment applications. Herein, adsorption properties (isotherms, kinetics and thermodynamics) of raw and organo-modified bentonites towards uranium species in aquaeous solutions were investigated. Organo-modified bentonites was prepared by practical and simple chemical modification method with hexadecyltrimethylammonium bromide (denoted as HDTMA-bentonites). The adsorption processes of U(VI) on HDTMA-bentonites were spontaneous and endothermic, and well simulated by pseudo-second-order model. The maximum adsorption capacity of U(VI) was calculated to be 31.45 mg/g at pH 8.5 and T = 298 K. Slovak bentonites Jelšový potok and Kopernica, their natural and HDTMA-modified forms might be a promising sorbent for the treatment of U(VI) contaminants in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Environmental protection agency USA. Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings. https://www.epa.gov/radiation/health-and-environmental-protection-standards-uranium-and-thorium-mill-tailings-40-cfr. Accessed 27 Jul 2017

  2. World Health Organization. Background uranium. http://www.who.int/water_sanitation_health/publications/2012/background_uranium.pdf. Accessed 27 Jul 2017

  3. Government regulation Slovak Republic nr. 269/2010 Z.z. http://www.noveaspi.sk/products/lawText/1/71240/1/2. Accessed 27 Jul 2017

  4. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Uranium. http://www.atsdr.cdc.gov/ToxProfiles/tp150.pdf. Accessed 27 Jul 2017

  5. Slugeň V, Mikloš M (2008) Urán—primárny zdroj elektrickej energie. Časopis EE 14(4):8–11

    Google Scholar 

  6. Viglašová E, Krajňák A, Galamboš M (2014) Specification and sources of spent nuclear fuel and high-level radioactive waste in the Slovak Republic. Bezpecnost Jaderne Energie. 22(11–12):329–337

    Google Scholar 

  7. Abdelaal AM (2004) Using a natural coagulant for treating wastewater. Eighth International Water Technology Conference, IWTC8, Alexandria, Egypt. pp. 781–791

  8. Galamboš M, Rosskopfová O, Kufčáková J, Rajec P (2011) Utilization of Slovak bentonites in deposition of high-level radioactive waste and spent nuclear fuel. J Radioanal Nucl Chem 288:765–777

    Article  Google Scholar 

  9. Krajňák A, Pivarčiová L, Rosskopfova O, Galamboš M, Rajec P (2015) Adsorption of nickel on rhyolitic Slovak bentonites. J Radioanal Nucl Chem 304:587–593

    Article  Google Scholar 

  10. Kraus I, Číčel B, Šamajová E, Michajdik D (1982) Origin and genesis of clays resulting from alteration of rhyolite volcanic rocks in Central Slovakia. Geol Zbor Geol Carpath 33(3):269–275

    CAS  Google Scholar 

  11. Kraus I, Hroncová Z, Horský S (1989) Ložiská a výskyty bentonitov SR. Mineralia Slovaca 21:525–531

    Google Scholar 

  12. Krajňák A, Viglašová E, Galamboš M (2014) Spent nuclear fuel and high-level radioactive waste handling, storage and disposal in the Slovak Republic. Bezpecnost Jaderné Energie 22:329–337

    Google Scholar 

  13. Adamcová R, Šuraba V, Krajňák A, Rosskopfová O, Galamboš M (2014) First shrinkage parameters of Slovak bentonites considered for engineered barriers in the deep geological repository of high-level radioactive waste and spent nuclear fuel. J Radioanal Nucl Chem 302(1):737–743

    Article  Google Scholar 

  14. Bauer V, Šofranko M, Stavnikovič M (2007) Research of the multibarrier system for an underground deposition of radioactive wastes. Acta Montan Slovaca 12(1):217–225

    CAS  Google Scholar 

  15. Galamboš M, Suchánek P, Rosskopfová O (2012) Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J Radioanal Nucl Chem 293(2):613–633

    Article  Google Scholar 

  16. Brunskill GJ, Wilkinson P (1987) Annual supply of 238U, 234U, 230Th, 226Ra, 210Pb, 210Po, and 232Th to Lake 239 (Experimental Lakes Area, Ontario) from terrestrial and atmospheric sources. Can J Fish Aquat Sci 44(1):215–230

    Article  CAS  Google Scholar 

  17. Abdel-Khalek AA, Ali MM, Ashour RM, Abdel-Magied AF (2011) Chemical studies on uranium extraction from concentrated phosphoric acid by using PC88A and DBBP mixture. J Radioanal Nucl Chem 290:353–359

    Article  CAS  Google Scholar 

  18. Anirudhan TS, Bringle CD, Rijith S (2010) Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. J Environ Radioact 101:267–276

    Article  CAS  Google Scholar 

  19. Cojocaru C, Zakrzewska-Trznadel G, Jaworska A (2009) Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. Part 1: optimization of complexation conditions. J Hazard Mater 169(1–3):599–609

    Article  CAS  Google Scholar 

  20. Djedidi Z, Bouda M, Souissi MA, Cheikh RB, Mercier G, Tyagi RD, Blais J-F (2009) Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge. J Hazard Mater 172(2–3):1372–1382

    Article  CAS  Google Scholar 

  21. Kim SS, Han GS, Kim GN, Koo DS, Kim IG, Choi JW (2016) Advanced remediation of uranium-contaminated soil. J Environ Radioact 164:239–244

    Article  CAS  Google Scholar 

  22. Kumari N, Prabhu DR, Pathak PN, Kanekar AS, Manchanda VK (2011) Extraction studies of uranium into a third-phase of thorium nitrate employing tributyl phosphate and N, N-dihexyl octanamide as extractants in different diluents. J Radioanal Nucl Chem 289(3):835–843

    Article  CAS  Google Scholar 

  23. Run** H, Weihua Z, Yi W, Lu Z (2006) Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93:127–143

    Google Scholar 

  24. Zheng-ji Y, Jun Y, Hui-lun Ch, Fei W, Zhi-min Y, **ng L (2016) Uranium biosorption from aqueous solution onto Eichhornia crassipes. J Environ Radioact 154:43–51

    Article  Google Scholar 

  25. Chen Z, Liang Y, Jia DS, Chen WY, Cui ZM, Wang XK (2017) Layered silicate RUB-15 for efficient removal of UO2 2+ and heavy metal ions by ion-exchange. Environ Sci-Nano 4(9):1851–1858

    Article  CAS  Google Scholar 

  26. Cheng W, Ding C, Wu Q, Wang X, Sun Y, Shi W, Hayat T, Alsaedi A, Chaicf Z, Wang XK (2017) Mutual effect of U(VI) and Sr(II) on graphene oxides: evidence from EXAFS and theoretical calculations. Environ Sci-Nano 4(5):1124–1131

    Article  CAS  Google Scholar 

  27. Zou Y, Liu Y, Wang X, Sheng G, Wang S, Ai Y, Ji Y, Liu Y, Hayat T, Wang XK (2017) Glycerol-modified binary layered double hydroxide nanocomposites for uranium immobilization via extended X-ray absorption fine structure technique and density functional theory calculation. ACS Sustain Chem Eng 5(4):3583–3595

    Article  CAS  Google Scholar 

  28. Yin L, Wang P, Wen T, Yu S, Wang X, Hayat T, Alsaedi A, Wang XK (2017) Synthesis of layered titanate nanowires at low temperature and their application in efficient removal of U(VI). Environ Pollut 226:125–134

    Article  CAS  Google Scholar 

  29. Wang P, Yin L, Wang J, Xu Ch, Liang Y, Yao W, Wang X, Yu S, Chen J, Sun Y, Wang XK (2017) Superior immobilization of U(VI) and 243Am(III) on polyethyleneimine modified lamellar carbon nitride composite from water environment. Chem Eng J 326:863–874

    Article  CAS  Google Scholar 

  30. Sun Y, Wang X, Ai Y, Yu Z, Huang W, Chen Ch, Hayat T, Alsaedi A, Wang XK (2017) Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations. Chem Eng J 310:292–299

    Article  CAS  Google Scholar 

  31. Yao W, Wang X, Liang Y, Yu S, Gu P, Sun Y, Xu Ch, Chen J, Hayat T, Alsaedi A, Wang XK (2018) Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: batch and EXAFS studies. Chem Eng J 332:775–786

    Article  CAS  Google Scholar 

  32. Cody A, Kemnetz J (1997) Process for the removal of heavy metals from aqueous systems using organoclays. US Patent 5667694, 16 Sept 1997

  33. Houhoune F, Nibou D, Chegrouche S, Menacer S (2016) Behaviour of modified hexadecyltrimethylammonium bromide bentonite toward uranium species. J Environ Chem Eng 4(3):3459–3467

    Article  CAS  Google Scholar 

  34. Li WP, Han XY, Wang XY, Wang YQ, Wang WX, Xu H, Tan TS, Wu WS, Zhang HX (2015) Recovery of uranyl from aqueous solutions using amidoximated polyacrylonitrile/exfoliated Na-montmorillonite composite. Chem Eng J 279:735–746

    Article  CAS  Google Scholar 

  35. Majdan M, Pikus S, Gajowiak A, Gladysz-Plaska A, Krzyżanowska H, Žuk J, Bujacka M (2010) Characterization of uranium(VI) sorption by organobentonite. Appl Surf Sci 256(17):5416–5421

    Article  CAS  Google Scholar 

  36. Wang YQ, Zhang ZB, Li Q, Liu YH (2012) Adsorption of uranium from aqueous solution using HDTMA+ pillared bentonite: isotherm, kinetic and thermodynamic aspects. J Radioanal Nucl Chem 293(1):231–239

    Article  CAS  Google Scholar 

  37. Liu J, Zhao Ch, Tu H, Yang J, Li F, Li D, Liao J, Yang Y, Tang J, Liu N (2016) U(VI) adsorption onto cetyltrimethylammonium bromide modified bentonite in the presence of U(VI)-CO3 complexes. Appl Clay Sci 135:64–74

    Article  Google Scholar 

  38. Ikhtiyarova G, Özcan A, Gök Ö, Özcan A (2016) Characterization of natural- and organo-bentonite by XRD, SEM, FT-IR and thermal analysis techniques and its adsorption behaviour in aqueous solutions. Clay Miner 47(1):31–44

    Article  Google Scholar 

  39. Galamboš M, Kufčáková J, Rajec P (2009) Sorption of strontium on Slovak bentonites. J Radioanal Nucl Chem 281(3):347–357

    Article  Google Scholar 

  40. Galamboš M, Kufčáková J, Rajec P (2009) Adsorption of cesium on domestic bentonites. J Radioanal Nucl Chem 281(3):485–492

    Article  Google Scholar 

  41. Sawin SB (1961) Analytical use of arsenazo III. Talanta 8:685–973

    Google Scholar 

  42. Moulin C, Laszak I, Moulin V (1998) Time-resolved laser-induced fluorescence as a unique tool for low-level uranium speciation. Appl Spectrosc 52(4):528–535

    Article  CAS  Google Scholar 

  43. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38(11):2221–2295

    Article  CAS  Google Scholar 

  44. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  45. Dubinin MM, Radushkievich LV (1947) The equation of the characteristic curve of the activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337

    Google Scholar 

  46. Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim 12:327–356

    Google Scholar 

  47. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens 98(24):1–39

    Google Scholar 

  48. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  49. Kul AR, Koyuncu H (2010) Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study. J Hazard Mater 179(1–3):332–339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Slovak Research and Development Agency APVV project no. SK-AT-2015-0003 and Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences VEGA project no. 1/0507/17. The authors are grateful to the team of Department of Inorganic Chemistry, Aristotle University in Thessaloniki, Greece for professional help and valuable advices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adrián Krajňák or Michal Galamboš.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krajňák, A., Viglašová, E., Galamboš, M. et al. Application of HDTMA-intercalated bentonites in water waste treatment for U(VI) removal. J Radioanal Nucl Chem 314, 2489–2499 (2017). https://doi.org/10.1007/s10967-017-5590-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5590-6

Keywords

Navigation