Log in

Trace metal and rare earth elements in a sediment profile from the Rio Grande Reservoir, São Paulo, Brazil: determination of anthropogenic contamination, dating, and sedimentation rates

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The Rio Grande Reservoir supplies water to four counties. Two sediment cores were collected, one was sliced every 2 cm for INAA and dating determinations; the other was cut every 5 cm, for grain size and Hg, Cd, Pb, Ni, Mn and Cu determinations. Sedimentation rates and sediment ages of every layer were determined by 210Pb method. Enrichment Factor (EF) and Geoaccumulation Index (I geo) were calculated. Significant enrichment was found for Na, Mn, Ni, Pb, Sb and Zn and extremely high enrichment for Hg, Cu and Cd, in upper layers. A 90 year pollution history of this reservoir was traced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. CETESB (2011) Qualidade das águas superficiais no estado de São Paulo––(2010)—Apêndice B. CETESB, São Paulo

    Google Scholar 

  2. Cánovas CR, Olias M, Vasquez-Suné E, Ayora C, Nieto JM (2012) Sci Tot Environ 416:418–428

    Article  Google Scholar 

  3. Silvério PF (2003) Bases técnico-científicas para derivação de valores guia de qualidade de sedimentos para metais: experimentos de campo e laboratório. PhD Thesis, Escola de Engenharia de São Carlos-USP, p 145

  4. Quináglia GA (2012) Caracterização dos Níveis basais de Concentração de metais nos sedimentos do sistema estuarino da Baixada Santista. Biblioteca 24 horas, São Paulo

  5. Gomes FC, Godoy JM, Godoy MLDP, Carvalho ZL, Lopes RT, Sanchez-Cabeza JAS, Lacerda LD, Wasserman JL (2009) Mar Poll Bull 59:123–133

    Article  Google Scholar 

  6. Audry S, Schaefer J, Blanc G, Jousnneau J-M (2004) Environ Pollut 132(3):413–426

    Article  CAS  Google Scholar 

  7. Albarede F (2011) Geoquímica. Uma Introdução. Oficina de Textos, São Paulo

    Google Scholar 

  8. Franklin RL, Ferreira FJ, Bevilacqua JE, Fávaro DIT (2012) J Radioanal Nucl Chem 291(1):147–153

    Article  CAS  Google Scholar 

  9. Luiz-Silva W, Machado W, Matos RHR (2008) J Braz Chem Soc 19(8):1490–1500

    Article  CAS  Google Scholar 

  10. Sutherland RA (2000) Environ Geol 39(6):611–627

    Article  CAS  Google Scholar 

  11. Fávaro DIT, Damatto SR, Moreira EG, Mazzilli BP, Campagnoli F (2007) J Radioanal Nucl Chem 273(2):451–463

    Article  Google Scholar 

  12. Bostelman E, (2006) Avaliação da concentração de metais em amostras de sedimento do reservatório Billings, braço Rio Grande, São Paulo, Brasil. MSc Thesis, IPEN-USP, p 117

  13. Moreira EG, Vasconcellos MBA, Saiki M (2006) J Radioanal Nucl Chem 269(2):377–382

    Article  CAS  Google Scholar 

  14. Larizatti FE, Fávaro DIT, Moreira SRD, Mazzilli BP, Piovano EL (2001) J Radioanal Nucl Chem 249(1):263–268

    Article  Google Scholar 

  15. Damatto SR (2009) In: Proceedings of international tropical conference on Po and radioactive Pb isotopes, Sevilla, España

  16. Leonardo L, Damatto SR, Gios BR, Mazzilli BP (2014) J Radioanal Nucl Chem 299(3):1935–1941

    Article  CAS  Google Scholar 

  17. http://www.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/3051a.pdf. Accessed 23 Jan 2012

  18. Norma técnica L6.160 (1995) Sedimentos: determinação da distribuição granulométrica-método de ensaio. CETESB, São Paulo

    Google Scholar 

  19. Loska K, Cebula J, Pelczar J, Wiechula D (1997) Kwapuliski. Water Air Soil Poll 93:347–365

    CAS  Google Scholar 

  20. Loska K, Wiechula D, Barska B, Cebula E, Chojnecka A (2003) Poll J Environ Stud 12(2):187–193

    CAS  Google Scholar 

  21. Loska K, Wiechula D, Korus I (2004) Environ Inter 30:159–163

    Article  CAS  Google Scholar 

  22. Szefer P, Skwarzec B (1988) Mar Chem 23:109–129

    Article  CAS  Google Scholar 

  23. Dias MI, Prudencio MI (2008) Microchem J 88:136–141

    Article  CAS  Google Scholar 

  24. Hernandez L, Probst A, Probst JL, Ulrich E (2003) Sci Tot Environ 312:195–219

    Article  CAS  Google Scholar 

  25. Lin C, He M, Zhou Y, Guo W, Yang Z (2008) Environ Monit Assess 137:329–342

    Article  CAS  Google Scholar 

  26. Zhang J, Liu CL (2002) Est Coast Shelf Sci 54:1051–1070

    Article  CAS  Google Scholar 

  27. Wedepohl KH (1995) Geochim Cosmochim Act 59(7):1217–1232

    Article  CAS  Google Scholar 

  28. Bode P (1996) Instrumental and organizational aspects of a neutron activation analysis laboratory. Interfaculty Reactor Institut, Delft

    Google Scholar 

  29. Franklin RL, Bevilacqua JE, Fávaro DIT (2012) Quím Nova 35(1):45–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Regina Damatto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franklin, R.L., Fávaro, D.I.T. & Damatto, S.R. Trace metal and rare earth elements in a sediment profile from the Rio Grande Reservoir, São Paulo, Brazil: determination of anthropogenic contamination, dating, and sedimentation rates. J Radioanal Nucl Chem 307, 99–110 (2016). https://doi.org/10.1007/s10967-015-4107-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4107-4

Keywords

Navigation