Log in

Levels and effects of natural radionuclides in soil samples of Garhwal Himalaya

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Distribution of natural radionuclide gives significant parameter to assess the presence of gamma radioactivity and its radiological effect in our environment. Natural radionuclides are present in the form of 226Ra, 232Th and 40K in soil, rocks, water, air, and building materials. Distribution of natural radionuclides depends on the type of minerals present in the soil and rocks. For this purpose gamma spectrometer is used as tool for finding the concentration of these radionuclides. The activity concentration of naturally occurring radionuclides 226Ra, 232Th and 40K in these soil samples were found to vary from of 8 ± 1 Bq/kg to 50 ± 10 Bq/kg with an average 20 Bq/kg, 7 ± 1–88 ± 16 Bq/kg with an Average 26 Bq/kg and 115 ± 18–885 ± 132 Bq/kg with an average 329 Bq/kg, respectively. In this paper, we are presenting the radiological effect due to distribution of natural radionuclide present in soil of Garhwal Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rani A, Singh S (2005) Atmos Environ 39:6306–6314

    Article  CAS  Google Scholar 

  2. Nageswara Rao MV (1989) Bull Radiat Prot 12:36–41

    Google Scholar 

  3. Menon MR, Mishra UC, Lalit BY, Shukla VK, Ramachandran TV (1982) Proc Indian Academy Sci (Earth Planet Sci) 91:127–136

    CAS  Google Scholar 

  4. Khan K, Khan HM, Tufail M, Ahamed N (1998) J Environ Radioact 38:77–84

    Article  CAS  Google Scholar 

  5. UNSCEAR (1988), United Nation Scientific Committee of the Effect of Atomic Radiation, Sources, Effects and Risk of Ionizing Radiation, New York: United Nations

  6. Radhakrishns AP, Somashekarappa HM, Narayana Y, Siddappa K (1993) Health Phys 65:390–395

    Article  Google Scholar 

  7. Quindos LS, Femandez PI, Soto J, Rodenas C, Gome ZJ (1994) Health Phys 66:194–200

    Article  CAS  Google Scholar 

  8. Papadopoulos A, Christofides G, Koroneos A, Poli G (2013) J Radioanal Nucl Chem 298:639–650

    Article  CAS  Google Scholar 

  9. Bhangara RC, Tiwari M, Ajmal PY, Sahu SK, Pandit GG (2014) J Radioanal Nucl Chem 300:17–22

    Article  Google Scholar 

  10. Elsasser WM (1967) Convection and stress propagation in the upper mantle. In: Runcorn SK (ed) The application of modern physics to the earth and planetary interiors. Wiley, New York, pp 223–246

  11. Mckenzie DP (1967) Geophys J Royal Astron Soc 14:297–305

    Article  Google Scholar 

  12. Mckenzie DP (1969) Geophys J Royal Astron Soc 18:1–32

    Article  Google Scholar 

  13. Oliver J, Isacks B (1967) J Geophys Res 72:4259–4275

    Article  Google Scholar 

  14. Iskandar BL, Molanar P (1967) Rev Geophys Space Phys 9:103–174

    Google Scholar 

  15. Shanbhag AA, Sartande SJ, Ramachandran TV, Puranik VD (2005) J Assoc Environ Geochem 8:304–308

    Google Scholar 

  16. Ramola RC, Gusain GS, Badoni M, Prasad Y, Ramchandran TV (2008) J Radiol Prot 28:379–385

    Article  CAS  Google Scholar 

  17. Rautela BS, Gusain GS, Yadav M, Sahoo SK, Tokonami S, Ramola RC (2013) Acta Geophys 61:1038–1045

    Article  Google Scholar 

  18. El-Arabi AM (2007) Radiat Meas 42:94–100

    Article  CAS  Google Scholar 

  19. Quindos LS, Fernandez PL, Soto J (1987) In: Seifert B, Esdorn H (eds) Indoor Air’87., 2Institute of Water, Soil and Hygiene, Berlin, p 365

    Google Scholar 

  20. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources Effects and Risks of Ionizing Radiation (UNSCEAR) (2000) Report to General Assembly with annexes Assembly B. United Nations sales Publications, United Nations, New York; p 97–105

  21. Singh S, Rani A, Mahajan RK (2005) Radiat Meas 39:431–439

    Article  CAS  Google Scholar 

  22. United Nations Scientific Committee of the Effect of Atomic Radiation (UNSCEAR) (1993) Sources, effects and risks of ionizing radiations. United Nations, New York

    Google Scholar 

  23. Organization for Economic cooperation and Development (OECD) (1979) Exposure to radiation from the natural radioactivity in building material. Nuclear Energy Agency, Paris

    Google Scholar 

  24. Ramola RC, Choubey VM, Prasad G, Gusain GS, Tosheva Z, Kies A (2011) Curr Sci 100:906–914

    CAS  Google Scholar 

  25. United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR) (2000) Sources and effects of ionizing radiation (without scientific annexes). United Nations, New York, p 6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjulata Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Rawat, M., Dangwal, A. et al. Levels and effects of natural radionuclides in soil samples of Garhwal Himalaya. J Radioanal Nucl Chem 302, 869–873 (2014). https://doi.org/10.1007/s10967-014-3277-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3277-9

Keywords

Navigation