Log in

Adsorption of strontium ions from aqueous solution using hydrous, amorphous MnO2–ZrO2 composite: a new inorganic ion exchanger

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Hydrous, amorphous MnO2–ZrO2 composite was prepared as a new inorganic composite material under various conditions for removal of Sr2+ ion from aqueous solutions. The physico-chemical characterization was carried out by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and thermogravimetry. The maximum sorption capacity for synthesized composite was evaluated as 1.5 meq/g sorbent and batch experiments were carried out as a function of contact time, aqueous phase pH, temperature and initial metal ions concentration of adsorptive solution. The results indicated that under optimal conditions, Sr2+ ions could be efficiently removed using MnO2–ZrO2 composite from aqueous solutions when pH > 5. The equilibrium isotherms were determined and the sorption data were successfully modeled using Langmuir model. Kinetics of the process was studied by considering a pseudo second-order model. This model predicted chemisorption as the adsorption mechanism. The results of thermodynamic investigation reveal that the adsorption process of the studied ion is entropy driven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen JP (1997) J Bioresour Technol 60:185–189

    Article  CAS  Google Scholar 

  2. Efremenkov V, Hooper E, Kourim V (1992) Use of inorganic sorbents for treatment of liquid wastes and backfill of underground repositories. IAEA, Vienna

    Google Scholar 

  3. Marageh MG, Husain SW, Khanchi AR, Ahmadi SJ (1996) J Appl Radiat Isot 47:501–505

    Article  CAS  Google Scholar 

  4. Noh YD, Komarneni S, Mackenzie KJD (2012) Sep Purif Technol 95:222–226

    Article  CAS  Google Scholar 

  5. Yusan S, Akyil S (2008) J Hazard Mater 160:388–395

    Article  CAS  Google Scholar 

  6. Mishra SP, Dubey SS, Tiwari D (2004) J Radioanal Nucl Chem 261:457–463

    Article  CAS  Google Scholar 

  7. Möller T, Harjula R, Lehto J (2002) Sep Purif Technol 28:13–23

    Article  Google Scholar 

  8. Marmier N, Delisée A, Fromage F (1999) J Colloid Interface Sci 211:54–60

    Article  CAS  Google Scholar 

  9. Mardan A, Ajaz R, Mehmood A, Raza SM, Ghaffar A (1999) Sep Purif Technol 16:147–158

    Article  CAS  Google Scholar 

  10. Anthony RG, Dosch RG, Gu D, Philip CV (1994) Ind Eng Chem Res 33:2702–2705

    Article  CAS  Google Scholar 

  11. Dubey SS, Rao BS (2011) J Hazard Mater 186:1028–1032

    Article  CAS  Google Scholar 

  12. Nilchi A, Hadjmohammadi MR, Garmarodi SR, Saberi R (2009) J Hazard Mater 167:531–535

    Article  CAS  Google Scholar 

  13. Dzyazko YS, Rozhdestvenska LM, Palchik AV, Lapicque F (2005) Sep Purif Technol 45:141–146

    Article  CAS  Google Scholar 

  14. Altas Y, Tel H, Yaprak G (2003) J Radiochim Acta 91:603–606

    Article  CAS  Google Scholar 

  15. Murray JW (1975) J Geochim Cosmochim Acta 39:505–519

    Article  CAS  Google Scholar 

  16. Murray JW (1974) J Colloid Interface Sci 46:357–371

    Article  CAS  Google Scholar 

  17. White DA, Labayru R (1991) J Ind Eng Chem Res 30:207–210

    Article  CAS  Google Scholar 

  18. Pendelyuk OI, Lisnycha TV, Strelko VV, Kirillov SA (2005) J Adsorpt 11:799–804

    Article  Google Scholar 

  19. Arani SS, Ahmadi SJ, Samani AB, Maragheh MG (2008) Anal Chim Acta 623:82–88

    Article  Google Scholar 

  20. Ahmadi SJ, Yavari R, Ashtari P, Gholipour V, Kamel L, Rakhshandehru F (2012) Chin J Chem 30:177–182

    Article  CAS  Google Scholar 

  21. Yousefi T, Khanchi AR, Ahmadi SJ, Rofouei MK, Yavari R, Davarkhah R, Myanji B (2012) J Hazard Mater 215–216:266–271

    Article  Google Scholar 

  22. Ahmadi SJ, Sadjadi S, Hosseinpour M (2012) Sep Sci Technol 47:1063–1069

    Article  CAS  Google Scholar 

  23. Ali IM, El-Zahhar AA, Zakaria ES (2005) J Radioanal Nucl Chem 264:637–644

    Article  CAS  Google Scholar 

  24. El-Khouly SH (2006) J Radioanal Nucl Chem 270:391–398

    Article  CAS  Google Scholar 

  25. Metwally E, El-Zakla T, Ayoub RR (2008) J Nucl Radiochem Sci 9:1–6

    Article  CAS  Google Scholar 

  26. Xue M, Wen P, Chitrakar R, Ooi K, Feng Q (2012) J Chem Eng Jpn 45:324–330

    Article  CAS  Google Scholar 

  27. Zavarin M, Powell BA, Bourbin M, Zhao P, Kersting AB (2012) Environ Sci Technol 46:2692–2698

    Article  CAS  Google Scholar 

  28. Nabi SA, Shalla AH, Khan AM, Ganie SA (2007) Colloid Surf A 302:241–250

    Article  CAS  Google Scholar 

  29. Siddiqi ZM, Pathania D (2003) J Chromatogr A 987:147–158

    Article  CAS  Google Scholar 

  30. Gupta AP, Verma GL, Ikram S (2000) React Funct Polym 43:33–41

    Article  CAS  Google Scholar 

  31. Davis M (1963) Infrared spectroscopy and molecular structure. Elsevier Publishing Co, Amsterdam

    Google Scholar 

  32. Vesely V, Pekarek V (1972) Talanta 19:219–262

    Article  CAS  Google Scholar 

  33. Inan S, Tel H, Altas Y (2006) J Radioanal Nucl Chem 267:615–621

    Article  CAS  Google Scholar 

  34. Mohsen AH (2007) Int J Phys Sci 2:178–184

    Google Scholar 

  35. Nassar MM, Magdy YH (1997) Ind Chem Eng Sect A 40:27–30

    Google Scholar 

  36. Mishra SP, Tiwari D (1993) J Radioanal Nucl Chem 170:133–141

    Article  CAS  Google Scholar 

  37. Chairat M, Rattanaphani S, Bremner JB, Rattanaphani V (2008) Dyes Pigment 76:435–439

    Article  CAS  Google Scholar 

  38. Angove MJ, Well JD, Johnson BB (1999) J Colloid Inter Sci 211:218–290

    Article  Google Scholar 

  39. Peric J, Trgo M, Medvidovic NV (2004) J Water Res 38:1893–1899

    Article  CAS  Google Scholar 

  40. Mohan D, Chander S (2006) J Colloid Interface Sci 299:57–76

    Article  Google Scholar 

  41. Abdel-Rahman KM, El-Kamash AM, El-Sourougy MR, Abdel-Moniem NM (2006) J Radioanl Nucl Chem 268:221–230

    Article  CAS  Google Scholar 

  42. Mohan D, Singh KP (2002) J Water Res 36:2304–2318

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi, S.J., Akbari, N., Shiri-Yekta, Z. et al. Adsorption of strontium ions from aqueous solution using hydrous, amorphous MnO2–ZrO2 composite: a new inorganic ion exchanger. J Radioanal Nucl Chem 299, 1701–1707 (2014). https://doi.org/10.1007/s10967-013-2852-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2852-9

Keywords

Navigation