Log in

New SRDN-3 probes with a semi-conductor detector for measuring radon activity concentration in underground spaces

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The article presents new Polish probes SRDN-3, developed at the Institute of Nuclear Chemistry and Technology in Warsaw, equipped with a semi-conductor detector used for continuous measurements of 222Rn activity concentration. Due to a relatively high lower detection limit, the device is dedicated for use in underground spaces—caves, adits, mines, tourist routes in strongholds, pyramids, etc. Its structure allows for difficult conditions in which the device is transported to the measurement site, as well as hard operating conditions caused chiefly by large ambient relative humidity, reaching up to 100%. The authors present calibration results of these appliances, as well as the results of their work in a cave and an adit in the Sudetes (SW Poland). After almost 2 years of working in difficult conditions, the probes displayed high reliability. No defects of the semi-conductor detectors or the electronics were observed, which ensured problem-free communication of the probe-programmer-PC set. Thanks to this, the authors have a 2 year stock of data, recorded hourly by five probes, at their disposal. The only element that did not withstand the test of extreme operating conditions was one of the combined relative humidity and temperature sensors. No powering problems were observed either, and the batteries were replaced once a year, before the winter season. Also the programmer functioned faultlessly, enabling data transmission to a PC, which, being much more sensitive to operating conditions, had been placed away from the site of probe exposure. After using more sensitive temperature, relative humidity and pressure sensors, SRDN-3 probes will certainly prove an excellent tool for microclimate measurements (including measurement of air-atmosphere exchange) in caves and other underground sites. Even nowadays they are already a satisfactory tool for monitoring 222Rn concentration in underground spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdel-Monem AA, El Aassy IE, El-Naggar AM, Attia KE, El-Fawy AG (1996) Concentration of radon gas and daughters in uranium exploration tunnels, Allougua, west central Sinai, Egypt. Radiat Phys Chem 47(5):765–767

    Article  CAS  Google Scholar 

  2. Åkerblom G (1999) Radon legislation and national guidelines. European research into radon in construction concerted action (ERRICCA), Report F14P-CT96-0064(DG12-WSMN), pp 19–20

  3. Bahtijari M, Vaupotič J, Gregorič A, Stegnar P, Kobal I (2008) Exposure to radon in the Gadime Cave, Kosovo. J Environ Radioact 99:343–348

    Article  CAS  Google Scholar 

  4. Batiot-Guilhe C, Seidel J-L, Jourde H, Hébrard O, Bailly-Comte V (2007) Seasonal variations of CO2 and 222Rn in a Mediterranean sinkhole–spring (Causse d’Aumelas, SE France). Int J Speleol 36(1):51–56

    Google Scholar 

  5. Bernhard S, Pineau JF, Skowronek J, Zettwoog P (1996) The radon hazard in non-uranium European mines: retrospective of a survey conducted between 1978 and 1982 in different mines across Europe. In: Proceedings of international conference technologically enhanced natural radiation caused by non-uranium mining, Szczyrk, Poland, pp 25–45, 16–19 October 1996

  6. Chibowski St, Komosa A (2001) Radon concentration in basements of old town buildings in the Lublin region, Poland. J Radioanal Nucl Chem 247(1):53–56

    Article  CAS  Google Scholar 

  7. Domański T, Chruścielewski W, Kluszczyński D, Olszewski J (1992) Radiation hazard in Polish mines—measurements and computer simulations. Radiat Prot Dosim 45(1/4):133–135

    Google Scholar 

  8. Dueñas C, Fernández MC, Carretero J, Liger E (1996) Measurement of 222Rn in soil concentrations in interstitial air. Appl Radiat Isot 47(9/10):841–847

    Article  Google Scholar 

  9. Dueñas C, Fernández MC, Cañete S, Carretero J, Liger E (1999) 222Rn concentrations, natural flow rate and the radiation exposure levels in the Nerja Cave. Atmospheric Environ 33:501–510

    Article  Google Scholar 

  10. Etiope G, Lombardi S (1994) Soil gas 222Rn in sedimentary basins in central Italy: its implications in radiation protection zoning. Radiat Prot Dosim 56(1–4):231–233

    CAS  Google Scholar 

  11. Fernández PL, Quindós LS, Soto J, Villar E (1984) Radiation exposure levels in Altamira Cave. Health Phys 46(2):445–447

    Google Scholar 

  12. Field MS (2007) Risks to cavers and cave workers from exposures to low-level ionizing α-radiation from 222Rn decay in caves. J Cave Karst Stud 69(1):207–228

    CAS  Google Scholar 

  13. Finkelstein M, Eppelbaum LV, Price C (2006) Analysis of temperature influences on the amplitude-frequency characteristics of Rn gas concentration. J Environ Radioact 86(2):251–270

    Article  CAS  Google Scholar 

  14. Friend CRL, Gooding TD (2002) Variations in the concentration of radon in parts of the Ogof Ffynnon Ddu system, Penwyllt, South Wales and estimates of doses to recreational cavers. J Environ Radioact 58:45–57

    Article  CAS  Google Scholar 

  15. Fukui M (2007) Evaluation of radon in soil gas and natural radioactivity in surface soil of Kinki District, Japan. J Nucl Sci Technol 44(8):1106–1116

    Article  CAS  Google Scholar 

  16. Gillmore GK, Phillips P, Denman A, Sperrin M, Pearce G (2001) Radon levels in abandoned metalliferous mines, Devon, southwest England. Ecotoxicol Environ Saf 49:281–292

    Article  CAS  Google Scholar 

  17. Gillmore G, Gilbertson D, Grattan J, Hunt C, McLaren S, Pyatt B, mani Banda R, Barker G, Denman A, Phillips P, Reynolds T (2005) The potential risk from 222radon posed to archaeologists and earth scientists: reconnaissance study of radon concentrations excavations, and archaeological shelters in the Great Cave of Niah, Sarawak, Malaysia. Ecotoxicol Environ Saf 60:213–227

    Article  CAS  Google Scholar 

  18. Grant CN, Lalor GC, Vutchkov MK, Balcazar M (2001) Radon map** of soils in St. Elizabeth, Jamaica. J Radioanal Nucl Chem 250(2):295–302

    Article  CAS  Google Scholar 

  19. Grattan JP, Gillmore GK, Gilbertson DD, Pyatt FB, Hunt CO, McLaren SJ, Phillips PS, Denman A (2004) Radon and “King Solomon’s Miners’: Faynan Orefield, Jordanian Desert. Sci Total Environ 319:99–113

    Article  CAS  Google Scholar 

  20. Hafez AF, Bishara AA, Kotb MA, Hussein AS (2003) Regular radon activity concentration and effective dose measurements inside the Great Pyramid with passive nuclear track detectors. Health Phys 85(2):210–215

    Article  CAS  Google Scholar 

  21. Hakl J, Csige I, Hunyadi I, Várhegyi A, Géczy G (1996) Radon transport in fractured porous media—experimental study in caves. Environ Int 22(1):S433–S437

    Article  CAS  Google Scholar 

  22. Hakl J, Hunyadi I, Csige I, Géczy G, Lénárt L, Várhegyi A (1997) Radon transport phenomena studied in karst caves—international experiences on radon levels and exposures. Radiat Meas 28(1–6):675–684

    Article  CAS  Google Scholar 

  23. Heidenreich WF, Tomášek L, Rogel A, Laurier D, Tirmarche M (2004) Studies of radon-exposed miner cohorts using a biologically based model: comparison of current Czech and French data with historic data from China and Colorado. Radiat Environ Biophys 43:247–256

    Article  CAS  Google Scholar 

  24. Hewson GS, Ralph MI (1994) An investigation into radiation exposures in underground non-uranium mines in Western Australia. J Radiol Prot 14(4):359–370

    Article  Google Scholar 

  25. Hoyos M, Soler V, Cañaveras JC, Sánchez-Moral S, Sanz-Rubio E (1998) Microclimatic characterization of a karstic cave: human impact on microenvironmental parameters of a prehistoric rock art Cave (Candamo Cave, northern Spain). Env Geol 33(4):231–242

    Article  CAS  Google Scholar 

  26. IAEA (1996) International basic safety standards for protection against ionizing radiation and for the safety of radiation sources. Safety series no. 115, International Atomic Energy Agency, Vienna

  27. IAEA (2003) Radiation protection against radon in workplaces other than mines. Safety Reports series no. 33, International Atomic Energy Agency, Vienna

  28. Iakovleva VS, Ryzhakova NK (2003) A method for estimating the convective radon transport velocity in soils. Radiat Meas 36:385–388

    Article  CAS  Google Scholar 

  29. ICRP (1993) Protection against Radon-222 at home and at work. Publication no. 65, International Commission on Radiation Protection, Pergamon Press, Oxford

  30. Khayrat AH, Oliver MA, Durrani SA (2001) The effect of soil particle size on soil radon concentration. Radiat Meas 34:365–371

    Article  CAS  Google Scholar 

  31. Kobal I, Smodiš B, Škofljanec M (1986) Radon-222 air concentrations in the Slovenian Karst Caves of Yugoslavia. Health Phys 50(6):830–834

    CAS  Google Scholar 

  32. Kobal I, Smodiš B, Burger J, Škofljanec M (1987) Atmospheric 222Rn in tourist caves of Slovenia, Yugoslavia. Health Phys 52(4):473–479

    CAS  Google Scholar 

  33. Kobal I, Ančik M, Škofljanec M (1988) Variations of 222Rn air concentration in Postojna Cave. Radiat Prot Dosim 25(3):207–211

    CAS  Google Scholar 

  34. Kobal I, Vaupotič J, Udovč H, Burger J, Stropnik B (1990) Radon concentrations in the air of Slovene (Yugoslavia) underground mines. Environ Int 16:171–173

    Article  Google Scholar 

  35. Kozak K, Janik M, Mazur J, Kochowska E, Bogacz J, Łoskiewicz J, Swakoń J, Zdziarski T, Haber R (2003) Radon calibration chambers at the H. Niewodniczański Institute of Nuclear Physics. Report IFJ no 1920/AP (in Polish)

  36. Lario J, Sánchez-Moral S, Cañaveras JC, Cuezva S, Soler V (2005) Radon continuous monitoring in Altamira Cave (northern Spain) to assess user’s annual effective dose. J Environ Radioact 80:161–174

    Article  CAS  Google Scholar 

  37. Lebecka J (1995) Radon in mines. Bezpieczeństwo Jądrowe i Ochrona Radiologiczna, nr 23, ss 21–39 (in Polish)

  38. Li X, Zheng B, Wang Y, Wang X (2006) A study of daily and seasonal variations of radon concentrations in underground buildings. J Environ Radioact 87:101–106

    Article  CAS  Google Scholar 

  39. Lozano JC, Vera Tomé F, Gómez Escobar V, Blanco Rodríguez P (2000) Radiological characterization of a uranium mine with no mining activity. Appl Radiat Isot 53:337–343

    Article  CAS  Google Scholar 

  40. Malanca A, Gaidolfi L (1997) Environmental radon in some brazilian towns and mines. Radiat Prot Dosim 69(3):211–216

    CAS  Google Scholar 

  41. Malczewski D, Żaba J (2007) 222Rn and 220Rn concentrations in soil gas of Karkonosze-Izera block (Sudetes Poland). J Environ Radioact 92:144–164

    Article  CAS  Google Scholar 

  42. Martinez T, Martinez G, Juarez F, Navarrete M, Espinosa G, Golzarri JI, Cabrera L, Gonzalez P (2005) Indoor radon and thoron concentrations in the pyramides of Teotihuacan. J Radioanal Nucl Chem 264(2):511–516

    Article  CAS  Google Scholar 

  43. Muramatsu H, Hasegawa N, Misawa C, Minami M, Tanaka E, Asami K, Kuroda C, Kawakami A (1999) Survey of 222Rn concentrations in the air of a tunnel located in Nagano city using the solid-state nuclear track detector method. Health Phys 77(1):43–51

    Article  CAS  Google Scholar 

  44. Muramatsu H, Tashiro Y, Hasegawa N, Misawa C, Minami M (2002) Seasonal variations of 222Rn concentrations in the air of a tunnel located in Nagano city. J Environ Radioact 60:263–274

    Article  CAS  Google Scholar 

  45. Neznal M, Matolín M, Just G, Turek K (2004) Short-term temporal variations of soil gas radon concentration and comparison of measurement techniques. Radiat Prot Dosim 108(1):55–63

    Article  CAS  Google Scholar 

  46. Papachristodoulou CA, Ioannides KG, Stamoulis KC, Patiris DL, Pavlides SB (2004) Radon activity levels and effective doses in the Perama cave, Greece. Health Phys 86(6):619–624

    Article  CAS  Google Scholar 

  47. Papastefanou C, Manolopoulou M, Stoulos S, Ioannidou A, Gerasopoulos E (2003) Radon concentrations and absorbed dose measurements in a Pleistocenic cave. J Radioanal Nucl Chem 258(1):205–208

    Article  CAS  Google Scholar 

  48. Perrier F, Richon P, Crouzeix C, Morat P, Le Mouël J-L (2004) Radon-222 signatures of natural ventilation regimes in an underground quarry. J Environ Radioact 71:17–32

    Article  CAS  Google Scholar 

  49. Perrier F, Richon P, Sabroux J-Ch (2005) Modelling the effect of air exchange on 222Rn and its progeny concentration in a tunnel atmosphere. Sci Total Environ 350(1–3):136–150

    CAS  Google Scholar 

  50. Perrier F, Richon P, Gautam U, Tiwari DR, Shrestha P, Sapkota SN (2007) Seasonal variations of natural ventilation and radon-222 exhalation in a slightly rising dead-end tunnel. J Environ Radioact 97:220–235

    Article  CAS  Google Scholar 

  51. Pinza-Molina C, Alcaide JM, Rodriguez-Bethencourt R, Hernandez-Armas J (1999) Radon exposures in the caves of Tenerife (Canary Islands). Radiat Prot Dosim 82(3):219–224

    CAS  Google Scholar 

  52. Przylibski TA (1998) Radon in the air in the Millenium of the Polish State underground tourist route in Kłodzko (Lower Silesia). Arch Environ Prot 24(2):33–41

    CAS  Google Scholar 

  53. Przylibski TA (1999) Radon concentration changes in the air of two caves in Poland. J Environ Radioact 45:81–94

    Article  CAS  Google Scholar 

  54. Przylibski TA (2000) Changes in the concentration of radon-222 and its daughter products in the air of the underground tourist route in Walim (Lower Silesia). Arch Environ Prot 26(3):13–27

    CAS  Google Scholar 

  55. Przylibski TA (2001) Radon and its daughter products behaviour in the air of an underground tourist route in the former arsenic and gold mine in Złoty Stok (Sudety Mountains, SW Poland). J Environ Radioact 57(2):87–103

    Article  CAS  Google Scholar 

  56. Przylibski TA (2002) Radon in air of caves and other underground tourist objects. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, 2002, Nr 102, Studia i Materiały Nr 29, Górnictwo i Geologia VI, pp 167–179 (in Polish)

  57. Przylibski TA, Piasecki J (1998) Radon as a natural radioactive tracer of permanent air movements in the Niedźwiedzia Cave (Śnieżnik Kłodzki, Sudety Mts.). Kras i Speleologia, T. 9 (XVIII), pp 179–193

  58. Qureshi AA, Kakar DM, Akram M, Khattak NU, Tufail M, Mchmood K, Jamil K, Khan HA (2000) Radon concentrations in coal mines of Baluchistan Pakistan. J Environ Radioact 48:203–209

    Article  CAS  Google Scholar 

  59. Ramola RC, Choubey VM, Prasad Y, Prasad G, Bartarya SK (2006) Variation in radon concentration and terrestrial gamma radiation dose rates in relation to the lithology in southern part of Kumaon Himalaya India. Radiat Meas 41:714–720

    Article  CAS  Google Scholar 

  60. Richon P, Perrier F, Sabroux J-C, Trique M, Ferry C, Voisin V, Pili E (2005) Spatial and time variations of radon-222 concentration in the atmosphere of a dead-end horizontal tunnel. J Environ Radioact 78(2):179–198

    Article  CAS  Google Scholar 

  61. Sajó-Bohus L, Greaves ED, Pálfalvi J, Urbani F, Merlo G (1997) Radon concentration measurements in Venezuelan caves using SSNTDS. Radiat Meas 28(1–6):725–728

    Article  Google Scholar 

  62. Sas D, Navrátil O, Sládek P, Surý J, Štelcl J, Zimák J (1995) Geological and mikroclimatical characterisation of the speleotherapeutical sanatorium on the 2nd level of the Zlaté Hory-South deposit, vol 25. Script Facultatis Scientiarum Naturalium Universitatis Masarykianæ Brunensis, pp 37–46 (in Czech)

  63. Schubert M, Schulz H (2002) Diurnal radon variations in the upper soil layers and at the soil-air interface related to meteorological parameters. Health Phys 83(1):91–96

    Article  CAS  Google Scholar 

  64. Segovia N, Mena M, Peña P, Tamez E, Seidel JL, Monnin M, Valdes C (1999) Soil radon time series: surveys in seismic and volcanic areas. Radiat Meas 31:307–312

    Article  CAS  Google Scholar 

  65. Sperrin M, Denman T, Phillips PS (2000) Estimating the dose from radon to recreational cave users in the Mendips, UK. J Environ Radioact 49(2):235–240

    Article  CAS  Google Scholar 

  66. Swakoń J, Kozak K, Paszkowski M, Gradziński R, Łoskiewicz J, Mazur J, Janik M, Bogacz J, Horwacik T, Olko P (2005) Radon concentration in soil gas around local disjunctive tectonic zones in the Krakow area. J Environ Radioact 78(2):137–149

    Article  CAS  Google Scholar 

  67. Szerbin P (1996) Radon concentrations and exposure levels in Hungarian caves. Health Phys 71(3):362–369

    Article  CAS  Google Scholar 

  68. Štelcl J, Zimák J, Navrátil O, Sládek P, Sas D (1995) Geological factors and microclimate of the speleotherapeutical sanatorium in the Javoříčko Caves, vol 25. Script Facultatis Scientiarum Naturalium Universitatis Masarykianæ Brunensis, pp 47–58 (in Czech)

  69. Tanahara A, Taira H, Takemura M (1997) Radon distribution and the ventilation of a limestone cave on Okinawa. Geochem J 31(1):49–56

    CAS  Google Scholar 

  70. Tokonami S, Sun Q, Akiba S, Zhuo W, Furukawa M, Ishikawa T, Hou Ch, Zhang S, Narazaki Y, Ohji B, Yonehara H, Yamada Y (2004) Radon and thoron exposures for cave residents in Shanxi and Shaanxi Provinces. Radiat Res 162:390–396

    Article  CAS  Google Scholar 

  71. Unger A, Finsterle S, Bodvarsson G (2004) Transport of radon gas into a tunnel at Yucca mountain–estimating large-scale fractured tuff hydraulic properties and implications for the operation of the ventilation system. J Contam Hydrol 70:153–171

    Article  CAS  Google Scholar 

  72. Varley NR, Flowers AG (1993) Radon in soil gas and its relationship with some major faults of SW England. Environ Geochem Health 15(2/3):145–151

    Article  CAS  Google Scholar 

  73. Veiga LHS, Melo V, Koifman S, Amaral ECS (2004) High radon exposure in a Brazilian underground coal mine. J Radiol Prot 24:295–305

    Article  CAS  Google Scholar 

  74. Virk HS, Kumar N, Sharma N, Bajwa BS (1998) Alpha-Guard radon survey in soil-gas and dwellings of some uranium-rich areas of Himachal Pradesh, India. Curr Sci 75(5):430–431

    Google Scholar 

  75. Wiegand K, Dunne SP (1996) Radon in the workplace—a study of occupational exposure in BT underground structures. Ann Occup Hyg 40(5):569–581

    CAS  Google Scholar 

  76. Wiegand J, Feige S, Quingling X, Schreiber U, Wieditz K, Wittmann C, **arong L (2000) Radon and thoron in cave dwellings (Yan’an, China). Health Phys 78(4):438–444

    Article  CAS  Google Scholar 

  77. Wołkowicz S (ed) (2007) Radon potential of Sudetes with determination of potentially medicinal radon water areas. Polish Geological Institute, Warsaw (in Polish)

    Google Scholar 

  78. Yener G, Küçüktas E (1998) Concentrations of radon and decay products in various underground mines in western Turkey and total effective dose equivalents. Analyst 123:31–34

    Article  CAS  Google Scholar 

  79. Zahorowski W, Whittlestone S, James JM (1998) Continuous measurements of radon and radon progeny as a basis for management of radon as a hazard in a tourist cave. J Radioanal Nucl Chem 236(1–2):219–225

    Article  CAS  Google Scholar 

  80. Zimák J, Štelcl J (2000) Geological conditions and rock radioactivity in the speleotherapy medical facility in the Zlaté Hory ore district (the Czech Republic). Geologica Carpathica 51(6):407–412

    Google Scholar 

  81. Zmazek B, Živčić M, Vaupotič J, Bidovec M, Poljak M, Kobal I (2002) Soil radon monitoring in the Krško Basin, Slovenia. Appl Radiat Isot 56:649–657

    Article  CAS  Google Scholar 

  82. Žunic ZS, Kobal I, Vaupotič J, Kozak K, Mazur J, Birovljev A, Janik M, Čeliković I, Ujić P, Demajo A, Krstić G, Jakupi B, Quarto M, Bochicchio F (2006) High natural radiation exposure in radon spa areas: a detailed field investigation in Niška Banja (Balkan region). J Environ Radioact 89:249–260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz A. Przylibski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Przylibski, T.A., Bartak, J., Kochowska, E. et al. New SRDN-3 probes with a semi-conductor detector for measuring radon activity concentration in underground spaces. J Radioanal Nucl Chem 285, 599–609 (2010). https://doi.org/10.1007/s10967-010-0574-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0574-9

Keywords

Navigation