Log in

U(VI) sorption on kaolinite: effects of pH, U(VI) concentration and oxyanions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

U(VI) sorption on kaolinite was studied as functions of contact time, pH, U(VI) concentration, solid-to-liquid ratio (m/V) by using a batch experimental method. The effects of sulfate and phosphate on U(VI) sorption were also investigated. It was found that the sorption kinetics of U(VI) can be described by a pseudo-second-order model. Potentiometric titrations at variable ionic strengths indicated that the titration curves of kaolinite were not sensitive to ionic strength, and that the pH of the zero net proton charge (pHPZNPC) was at 6.9. The sorption of U(VI) on kaolinite increased with pH up to 6.5 and reached a plateau at pH >6.5. The presence of phosphate strongly increased U(VI) sorption especially at pH <5.5, which may be due to formation of ternary surface complexes involving phosphate. In contrast, the presence of sulfate did not cause any apparent effect on U(VI) sorption. A double layer model was used to interpret both results of potentiometric titrations and U(VI) sorption on kaolinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Křepelová A, Reich T, Sachs S, Drebert J, Bernhard G (2008) J Colloid Interface Sci 319:40

    Article  Google Scholar 

  2. Erten HN, Gokmenoglu Z (1994) J Radioanal Nucl Chem 182:375

    Article  CAS  Google Scholar 

  3. Cho YH, Jeong CH, Hahn PS (1996) J Radioanal Nucl Chem 204:33

    Article  CAS  Google Scholar 

  4. Wang X, Dong W, Gong Y, Wang C, Tao Z (2001) J Radioanal Nucl Chem 250:267

    Article  CAS  Google Scholar 

  5. Sachs S, Bernhard G (2008) Chemosphere 72:1441

    Article  CAS  Google Scholar 

  6. Křepelová A, Sachs S, Bernhard G (2006) Radiochim Acta 943:825

    Article  Google Scholar 

  7. Křepelová A, Brendler V, Sachs S, Baumann N, Bernhard G (2007) Environ Sci Technol 41:6142

    Article  Google Scholar 

  8. Ohnuki T, Yoshida T, Ozaki T, Samadfam M, Kozai N, Yubuta K, Mitsugashira T, Kasama T, Francis AJ (2005) Chem Geol 220:237

    Article  CAS  Google Scholar 

  9. Payne TE, Davis JA, Lumpkin GR, Chisari R, Waite TD (2004) Appl Clay Sci 26:151

    Article  CAS  Google Scholar 

  10. Memon JR, Hallam KR, Bhanger MI, Turki AE, Allen GC (2009) Anal Chim Acta 631:69

    Article  CAS  Google Scholar 

  11. Bradbury MH, Baeyens B (2002) Porewater chemistry in compacted re-saturated MX-80 bentonite: physico-chemical characterization and geochemical modeling, PSI Bericht Nr. 02-10, June 2002, ISSN 1019-0643, p 31

  12. Tao ZY, Chu TW, Du JZ, Dai XX, Gu YG (2000) Appl Geochem 15:133

    Article  Google Scholar 

  13. Dzombak DA, Morel FMM (1990) Complexation modeling: hydrous ferric oxide. Wiley-Interscience, New York

    Google Scholar 

  14. Herbelin A, Westall J (1994) FITEQL, a computer program for determination of chemical equilibrium constants from experimental data, version 3.1. Department of Chemistry, Oregon State University, Oregon

  15. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S.G.S. Water-Resources Report 99-4259

  16. Grenthe I, Fuger J, Konings R, Lemire RJ, Muller AB, Nguyen-Trung C, Wanner H (1992) In: Wanner H, Forest I (eds) Chemical thermodynamics of uranium. Nuclear Energy Agency, Organisation for Economic Co-Operation and Development, Elsevier

  17. Hummel W, Berner U, Curti E, Pearson FJ, Thoenen T (2002) Nagra/PSI chemical thermodynamic data base 01/01. Universal Publishers/uPUBLISH.com, USA. Also issued as Nagra Technical Report NTB 02-16, Nagra, Wettingen, Switzerland

  18. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New York, p 538

    Google Scholar 

  19. Tertre E, Castet S, Berger G, Loubet M, Giffaut E (2006) Geochim Cosmochim Acta 70:4579

    Article  CAS  Google Scholar 

  20. Huertas FJ, Chou L, Wollast R (1998) Geochim Cosmochim Acta 62:417

    Article  CAS  Google Scholar 

  21. Ganor J, Cama J, Metz V (2003) J Colloid Interface Sci 264:67

    Article  CAS  Google Scholar 

  22. Guo Z, Xu J, Shi K, Tang Y, Wu W, Tao Z (2009) Colloids Surf A 339:126

    Article  CAS  Google Scholar 

  23. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Bioresour Technol 96:1241

    Article  CAS  Google Scholar 

  24. Ho YS, McKay G (1999) Process Biochem 34:451

    Article  CAS  Google Scholar 

  25. Guo Z, Su H, Wu W (2009) Radiochim Acta 97:133

    Article  CAS  Google Scholar 

  26. Tertre E, Berger G, Simoni E, Castet S, Giffaut E, Loubet M, Catalette H (2006) Geochim Cosmochim Acta 70:4563

    Article  CAS  Google Scholar 

  27. Mellah A, Chegrouche S, Barkat M (2006) J Colloid Interface Sci 296:434

    Article  CAS  Google Scholar 

  28. Guo Z, Li Y, Wu W (2009) Appl Radiat Isot 67:996

    Article  CAS  Google Scholar 

  29. Guo Z, Yan C, Xu J, Wu W (2009) Colloids Surf A 336:123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by the National Natural Science Foundation of China (Nos. 20971061, 20501010 and J0630962) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, L., Yang, Z., Shi, K. et al. U(VI) sorption on kaolinite: effects of pH, U(VI) concentration and oxyanions. J Radioanal Nucl Chem 284, 519–526 (2010). https://doi.org/10.1007/s10967-010-0510-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0510-z

Keywords

Navigation