Log in

Sorption of 14C, 99Tc, 137Cs, 90Sr, 63Ni, and 241Am onto a rock and a fracture-filling material from the Wolsong low- and intermediate-level radioactive waste repository, Gyeongju, Korea

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sorption experiments for radionuclides such as 14C, 99Tc, 137Cs, 90Sr, 63Ni, and 241Am were conducted using two different groundwaters (GM-1 and SS-5) and solid materials (granodiorite and fracture-filling material) sampled from the Wolsong low- and intermediate-level radioactive waste (LILW) repository, Gyeongju, Korea. The distribution coefficients of the radionuclides, K d’s, were obtained and their sorption properties were discussed for each radionuclide. For all sorbing radionuclides, the K d values for the fracture-filling material were observed to be higher than those for granodiorite regardless of the groundwater. The K d values were increased in the sequence 99Tc < 14C < 90Sr < 137Cs < 63Ni < 241Am regardless of sorbent types implying that the sorption of radionuclides onto geological media is affected by their chemical behavior in accordance with geochemical environments. Anionic radionuclides such as 14C and 99Tc showed very low K d values both for the granodiorite and fracture-filling material. The mineralogical composition of the geological media and groundwater conditions was also observed to be important in the sorption of sorbing radionuclides, especially in the case of strongly sorbing radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cheong JH, Lee KH, Lee YK, Jeong CW, Rho BH (2008) J Korean Radioact Waste Soc 6:357

    Google Scholar 

  2. Chapman NA, McKinley IG, Hill MD (1987) The geological disposal of nuclear waste. Wiley, Chichester

    Google Scholar 

  3. Baik MH, Lee SY, Lee JK, Kim SS, Park CK, Choi JW (2008) Nucl Eng Technol 40:63

    Google Scholar 

  4. Stenhouse MJ, Pöttinger J (1994) Radiochim Acta 66/67:267

    CAS  Google Scholar 

  5. Berry JA, Bourke PJ, Coates HA, Green A, Jefferies NL, Littleboy AK, Hooper AJ (1988) Radiochim Acta 44/45:135

    Google Scholar 

  6. Ticknor KV (1993) Radiochim Acta 60:33

    CAS  Google Scholar 

  7. Aksoyoglu S (1989) J Radioanal Nucl Chem 134:393

    Article  CAS  Google Scholar 

  8. Baik MH, Hahn PS (2002) J Korean Nucl Soc 34:445

    CAS  Google Scholar 

  9. Vandergraaf TT, Abry DRM (1982) Nucl Technol 57:399

    CAS  Google Scholar 

  10. Vandergraaf TT, Abry DRM, Davis CE (1982) Chem Geol 36:139

    Article  CAS  Google Scholar 

  11. Wels C, Smith L, Vandergraaf TT (1996) Water Resour Res 32:1943

    Article  Google Scholar 

  12. Baik MH, Hahn PS (2003) J Radioanal Nucl Chem 256:11

    Article  CAS  Google Scholar 

  13. Baik MH, Cho WJ, Hahn PS (2004) J Radioanal Nucl Chem 260:495

    Article  CAS  Google Scholar 

  14. Bargar JR, Reitmeyer R (1999) Environ Sci Technol 33:2481

    Article  CAS  Google Scholar 

  15. Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Geochim Cosmochim Acta 58:1153

    Article  Google Scholar 

  16. Baik MH, Hyun SP, Cho WJ, Hahn PS (2004) Radiochim Acta 92:663

    Article  CAS  Google Scholar 

  17. Drever JI (1997) The geochemistry of natural waters: surface and groundwater environment. Prentice Hall, Upper Saddle River

    Google Scholar 

  18. Choi BY, Kim GY, Koh YK, Shin SH, Yoo SW, Kim DH (2008) J Korean Radioact Waste Soc 6:297

    Google Scholar 

  19. Kim GY, Koh YK, Choi BY, Shin SH, Kim DH (2008) J Korean Radioact Waste Soc 6:307

    Google Scholar 

  20. Mckinley IG, Scholtis A (1991) Compilation and comparison of radionuclide sorption database used in recent performance assessments. In: Proceedings of an NEA workshop on radionuclide sorption from the safety evaluation perspective, Interlaken, Switzerland, 16–18 October

  21. Stumm W, Morgan JJ (1981) Aquatic chemistry. Wiley, New York

    Google Scholar 

  22. McKinley IG, Hadermann J (1985) Radionuclide sorption database for Swiss safety assessment. Nagra Technical Report NTB 84-40, Baden

  23. Suksi S, Siitari-Kauppi M, Hölttä P, Jaakkola T, Lindberg A (1989) Sorption and diffusion of radionuclides (C, Tc, U, Pu, Np) in rock samples under oxic and anoxic conditions. Report YJT-89-13, Nuclear Waste Commission of Finnish Power Companies, Helsinki

  24. Rard JA, Rand MH, Anderegg G, Wanner H (1999) Chemical thermodynamics of technetium. Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA), Elsevier Science, Amsterdam

    Google Scholar 

  25. Kumata M, Vandergraaf TT (1991) Nuclide migration tests under deep geological conditions. In: Proceedings of the third international symposium on advanced nuclear energy research—global environment and nuclear energy, Mito City, Japan

  26. Vandergraaf TT (1982) A compilation of sorption coefficients for radionuclides on granites and granitic rocks. Whiteshell Nuclear Research Establishment Technical Report TR-120, Atomic Energy Canada Limited, Pinawa

  27. Andersson K, Allard B (1983) Sorption of radionuclides on geologic media—a literature survey. KBS Technical Report TR 83-07, Swedish Nuclear Fuel and Waste Management Co., Stockholm

  28. Vandergraaf TT, Ticknor KV (1994) A compilation and evaluation of radionuclide sorption coefficients used in the GEONET submodel of SYVAC for the Whiteshell Research Area. AECL-10546, Atomic Energy Canada Limited, Pinawa

  29. Andersson K, Torstenfelt B, Allard B (1983) Sorption of radionuclides in geologic systems. KBS Technical Report TR 83-63, Swedish Nuclear Fuel and Waste Management Co., Stockholm

  30. Ticknor KV (1994) A study of nickel sorption. AECL TR-628, COG-94-27, Atomic Energy Canada Limited (AECL), Pinawa

  31. Silva RJ, Bidoglio G, Rand MH, Robouch PB, Wanner H, Puigdomenech I (1995) Chemical thermodynamics of americium. Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA), Elsevier Science, Amsterdam

    Google Scholar 

  32. Kim JI (2006) Nucl Eng Technol 38:459

    CAS  Google Scholar 

  33. Ames LL, Rai D (1978) Radionuclide interactions with rock and soil media. EPA-520/6-78-007, U.S. Environmental Protection Agency, Washington, DC

  34. Skagius K, Neretnieks I (1986) Water Resour Res 22:389

    Article  CAS  Google Scholar 

  35. Muuronen S, Kämäräinen E-L, Jaakkola T, Pinnioja S, Lindberg A (1985) Mater Res Soc Symp Proc 50:747

    Google Scholar 

Download references

Acknowledgements

This study was carried out as a part of a site investigation on the Wolsong LILW repository implemented by Korea Hydro and Nuclear Power Co., LTD. This study was supported by Hyundai Engineering Co., LTD and partially supported by the Nuclear R&D Program of the Ministry of Education, Science, and Technology (MEST), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Baik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baik, M.H., Kim, S.S., Lee, J.K. et al. Sorption of 14C, 99Tc, 137Cs, 90Sr, 63Ni, and 241Am onto a rock and a fracture-filling material from the Wolsong low- and intermediate-level radioactive waste repository, Gyeongju, Korea. J Radioanal Nucl Chem 283, 337–345 (2010). https://doi.org/10.1007/s10967-009-0369-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-009-0369-z

Keywords

Navigation