Log in

Study the effects of functionality of carbon nanotubes upon acoustic wave absorption coefficient, microstructure, and viscoelastic behavior of polyurethane/CNT nanocomposite foam

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, lightweight and flexible polyurethane (PU) foams loaded with multiwalled carbon nanotubes (MWCNTs) are synthesized by the free-rising foaming process. The CNT's surface functionality influences cellular structure and mechanical, acoustic wave absorption characteristics of the nanocomposite foams. Flow resistivity and compressive mechanical properties of the fabricated samples have been studied. The acoustic wave absorbency within a wide range of frequencies (63–6300 Hz) was evaluated for the prepared PU/CNT foamed nanocomposite samples. Results indicated that carbon nanotubes' functionalization enhanced the acoustic absorption coefficient above 1000 Hz frequencies. The unfunctionalized-based PU/CNT nanocomposite foam exhibited better acoustical properties within low frequencies. In addition, by functionalizing MWCNT, the nanocomposite foams' mechanical dam** behavior decreases, indicating enhanced interfaces between PU segments and CNT particles via functionalization, which leads to a lower viscous response to the mechanical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Niyogi S, Hamon M, Hu H, Zhao B, Bhowmik P, Sen R et al (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113

    Article  CAS  PubMed  Google Scholar 

  2. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  3. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41:1345–1367

    Article  Google Scholar 

  4. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859

    Article  CAS  Google Scholar 

  5. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  CAS  PubMed  Google Scholar 

  6. Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Springer, Functional molecular nanostructures, pp 193–237

    Google Scholar 

  7. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  PubMed  Google Scholar 

  8. Bernal MM, Martin-Gallego M, Romasanta LJ, Mortamet A-C, López-Manchado MA, Ryan AJ et al (2012) Effect of hard segment content and carbon-based nanostructures on the kinetics of flexible polyurethane nanocomposite foams. Polymer 53:4025–4032

    Article  CAS  Google Scholar 

  9. Verdejo R, Bernal MM, Romasanta LJ, Tapiador FJ, Lopez-Manchado MA (2011) Reactive nanocomposite foams. Cell Polym 30:45–62

    Article  CAS  Google Scholar 

  10. Verdejo R, Stämpfli R, Alvarez-Lainez M, Mourad S, Rodriguez-Perez M, Brühwiler P et al (2009) Enhanced acoustic dam** in flexible polyurethane foams filled with carbon nanotubes. Compos Sci Technol 69:1564–1569

    Article  CAS  Google Scholar 

  11. Bandarian M, Shojaei A, Rashidi AM (2011) Thermal, mechanical and acoustic dam** properties of flexible open-cell polyurethane/multi-walled carbon nanotube foams: effect of surface functionality of nanotubes. Polym Int 60:475–482

    Article  CAS  Google Scholar 

  12. Basirjafari S, Malekfar R, Khadem SE (2012) Low loading of carbon nanotubes to enhance acoustical properties of poly (ether) urethane foams. J Appl Phys 112:104312

    Article  Google Scholar 

  13. Lee J, Kim GH, Ha CS (2012) Sound absorption properties of polyurethane/nano-silica nanocomposite foams. J Appl Polym Sci 123:2384–2390

    Article  CAS  Google Scholar 

  14. Yang Z, Yuan L, Gu Y, Li M, Sun Z, Zhang Z (2013) Improvement in mechanical and thermal properties of phenolic foam reinforced with multiwalled carbon nanotubes. J Appl Polym Sci 130:1479–1488

    Article  CAS  Google Scholar 

  15. Bahrambeygi H, Sabetzadeh N, Rabbi A, Nasouri K, Shoushtari AM, Babaei MR (2013) Nanofibers (PU and PAN) and nanoparticles (Nanoclay and MWNTs) simultaneous effects on polyurethane foam sound absorption. J Polym Res 20:1–10

    Article  CAS  Google Scholar 

  16. Bernal MM, Lopez-Manchado MA, Verdejo R (2011) In situ foaming evolution of flexible polyurethane foam nanocomposites. Macromol Chem Phys 212:971–979

    Article  CAS  Google Scholar 

  17. Gheydari M, Dorraji MS, Fazli M, Rasoulifard M, Almaie S, Daneshvar H et al (2021) Preparation of open-cell polyurethane nanocomposite foam with Ag 3 PO 4 and GO: antibacterial and adsorption characteristics. J Polym Res 28:1–12

    Article  Google Scholar 

  18. Hasani Baferani A, Ohadi A, Katbab AA (2021) Toward mechanistic understanding the effect of aspect ratio of carbon nanotubes upon different properties of polyurethane/carbon nanotube nanocomposite foam. Polym Eng Sci 61:3037–3049

    Article  CAS  Google Scholar 

  19. Baferani AH, Keshavarz R, Asadi M, Ohadi A (2018) Effects of silicone surfactant on the properties of open-cell flexible polyurethane foams. Adv Polym Technol 37:21643

    Article  Google Scholar 

  20. Hasani Baferani A, Katbab AA, Ohadi AR (2017) The role of sonication time upon acoustic wave absorption efficiency, microstructure, and viscoelastic behavior of flexible polyurethane/CNT nanocomposite foam. Eur Polymer J 90:383–391

    Article  CAS  Google Scholar 

  21. Allard J, Atalla N (2009) Propagation of sound in porous media: modelling sound absorbing materials 2Ed. John Wiley & Sons

Download references

Acknowledgements

This paper resulted from a Ph.D. project (ethics code number: AUT.P6 169) approved by the Graduate Committee of Amirkabir University of Technology (Tehran Polytechnic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hasani Baferani.

Ethics declarations

Competing of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasani Baferani, A., Katbab, A.A. & Ohadi, A.R. Study the effects of functionality of carbon nanotubes upon acoustic wave absorption coefficient, microstructure, and viscoelastic behavior of polyurethane/CNT nanocomposite foam. J Polym Res 29, 227 (2022). https://doi.org/10.1007/s10965-022-03086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03086-3

Keywords

Navigation