Log in

The synergistic role of acidic molecular sieve on flame retardant performance in PLA/MF@APP composite

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Intumescent flame retardant (FR) system containing acid source, foaming agent and carbonizing agent becomes popular to improve flame suppression. It is still challenging to improve FR performance by directly utilizing polymer matrix as carbonizing agent. Herein, we selected polylactide (PLA) matrix as carbonizing agent, APP encapsulated with melamine formaldehyde (MF) resin (MF@APP) as FR system, and acidic molecular sieve (HZ) as a synergist to improve the flame suppression performance in PLA/MF@APP composites. The APP surfaces were encapsulated with MF particles to protect APP from moisture, which could be supported by scanning electron microscopy (SEM) and Fourier transform infrared spectrometer spectra (FTIR). Temperature-programmed desorption of ammonia (NH3-TPD) measurement proved that HZ particle exhibited more weak and strong acid sites. As an effective synergist, PLA/MF@APP composites with 0.5% synergist exhibit higher (~ 60%) limited oxygen index (LOI) of 28.8% and lower (50%) peak heat release rate (pHRR) of 211 kW/m2 than that of neat PLA. In order to investigate the acidic role of molecular sieve synergist, we exploit neat molecular sieve as a control sample for the comparative study. As a result of protective char layer formation, the total smoke release (TSR) value further decreased from 130.4 to 76.6 m2/m2 in the PLA/MF@APP composites with acidic synergists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Y, **ong ZQ, Ge HD, Ni LK, Zhang T, Huo SQ, Song PA, Fang ZP (2020) Core–shell bioderived flame retardants based on chitosan/alginate coated ammonia polyphosphate for enhancing flame retardancy of polylactic acid. ACS Sustain Chem Eng 8:6402–6412. https://doi.org/10.1021/acssuschemeng.0c00634

    Article  CAS  Google Scholar 

  2. He L, Song F, Li DF, Zhao X, Wang XL, Wang YZ (2020) Strong and tough polylactic acid based composites enabled by simultaneous reinforcement and interfacial compatibilization of microfibrillated cellulose. ACS Sustain Chem Eng 8:1573–1582. https://doi.org/10.1021/acssuschemeng.9b06308

    Article  CAS  Google Scholar 

  3. Liu T, **g J, Zhang Y, Fang ZP (2018) Synthesis of a novel polyphosphate and its application with APP in flame retardant PLA. RSC Adv 8:4483–4493. https://doi.org/10.1039/c7ra12582h

    Article  CAS  Google Scholar 

  4. Wen X, Liu ZQ, Li Z, Zhang J, Wang DY, Szymanska K, Chen XC, Mijowska E, Tang T (2020) Constructing multifunctional nanofiller with reactive interface in PLA/CB-g-DOPO composites for simultaneously improving flame retardancy, electrical conductivity and mechanical properties. Compos Sci Technol 188:107988

    Article  CAS  Google Scholar 

  5. ** XD, Cui SP, Sun SB, Gu XY, Li HF, Sun J, Zhang S, Bourbigot S (2019) The preparation of an intumescent flame retardant by ion exchange and its application in polylactic acid. ACS Appl Polym Mater 1:755–764. https://doi.org/10.1021/acsapm.8b00278

    Article  CAS  Google Scholar 

  6. Wang DY, Song YP, Lin L, Wang XL, Wang YZ (2011) A novel phosphorus-containing poly(lactic acid) toward its flame retardation. Polymer 52:233–238. https://doi.org/10.1016/j.polymer.2010.11.023

    Article  CAS  Google Scholar 

  7. Lazar ST, Kolibaba TJ, Grunlan JC (2020) Flame-retardant surface treatments Nature Reviews Materials 5:259–275. https://doi.org/10.1038/s41578-019-0164-6

    Article  CAS  Google Scholar 

  8. Tawiah B, Yu B, Fei B (2018) Advances in flame retardant poly(Lactic Acid). Polymers (Basel) 10. https://doi.org/10.3390/polym10080876

  9. Shaw S (2010) Halogenated flame retardants: do the fire safety benefits justify the risks? Rev Environ Health 25:261–306

    Article  CAS  Google Scholar 

  10. Zhang S, Yan YX, Wang WJ, Gu XY, Li HF, Li JH, Sun J (2018) Intercalation of phosphotungstic acid into layered double hydroxides by reconstruction method and its application in intumescent flame retardant poly (lactic acid) composites. Polym Degrad Stab 147:142–150. https://doi.org/10.1016/j.polymdegradstab.2017.12.004

    Article  CAS  Google Scholar 

  11. Chen XL, Yu J, Guo SY (2006) Structure and properties of polypropylene composites filled with magnesium hydroxide. J Appl Polym Sci 102:4943–4951. https://doi.org/10.1002/app.24938

    Article  CAS  Google Scholar 

  12. Horacek H, Grabner R (1996) Advantages of flame retardants based on nitrogen compounds. Polym Degrad Stab 54:205–215

    Article  CAS  Google Scholar 

  13. Tian NN, Wen X, Gong J, Ma L, Xue J, Tang T (2013) Synthesis and characterization of a novel organophosphorus flame retardant and its application in polypropylene. Polym Adv Technol 24:653–659. https://doi.org/10.1002/pat.3129

    Article  CAS  Google Scholar 

  14. Almeras X, Dabrowski F, Le Bras M, Poutch F, Bourbigot S, Marosi G, Anna P (2002) Using polyamide-6 as charring agent in intumescent polypropylene formulationsI. Effect of the compatibilising agent on the fire retardancy performance. Polym Degrad Stab 77(2):305–313. https://doi.org/10.1016/S0141-3910(02)00068-X

  15. Bras ML, Bugajny M, Lefebvre JM, Bourbigot S (2000) Use of polyurethanes as char-forming agents in polypropylene intumescent formulations. Polym Int 49(10):1115–1124

    Article  Google Scholar 

  16. Fontaine G, Bourbigot S (2009) Intumescent polylactide: A nonflammable material. J Appl Polym Sci 113:3860–3865. https://doi.org/10.1002/app.30379

    Article  CAS  Google Scholar 

  17. Zhao X, Chen L, Li DF, Fu T, He L, Wang XL, Wang YZ (2021) Biomimetic construction peanut-leaf structure on ammonium polyphosphate surface: Improving its compatibility with poly(lactic acid) and flame-retardant efficiency simultaneously. Chem Eng J. https://doi.org/10.1016/j.cej.2021.128737

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gao DD, Wen X, Guan YY, Czerwonko W, Li YH, Gao Y, Mijowska E, Tang T (2020) Flame retardant effect and mechanism of nanosized NiO as synergist in PLA/APP/CSi-MCA composites. Compos Commun 17:170–176. https://doi.org/10.1016/j.coco.2019.12.007

    Article  CAS  Google Scholar 

  19. Chen JL, Wang JH, Chen HD, Ni AQ, Ding AX (2020) Synergistic effect of intumescent flame retardant and attapulgite on mechanical properties and flame retardancy of glass fibre reinforced polyethylene composites. Compos Struct 246:112404

    Article  Google Scholar 

  20. Qian Y, Wei P, Jiang PK, Li Z, Yan YG, Ji KJ (2013) Aluminated mesoporous silica as novel high-effective flame retardant in polylactide. Compos Sci Technol 82:1–7. https://doi.org/10.1016/j.compscitech.2013.03.019

    Article  CAS  Google Scholar 

  21. Wang N, Mi L, Wu YX, Wang XZ, Fang QH (2013) Enhanced flame retardancy of natural rubber composite with addition of microencapsulated ammonium polyphosphate and MCM-41 fillers. Fire Saf J 62:281–288. https://doi.org/10.1016/j.firesaf.2013.09.008

    Article  CAS  Google Scholar 

  22. Gu XY, Wang YF, Liu XD, Zhang S, Li HF, Sun J, ** XD, Tang WF (2019) Efficient approach to enhancing the fire resistance of polypropylene by modified microporous aluminosilicate from kaolinite as synergist. Polym Adv Technol 31:1047–1058. https://doi.org/10.1002/pat.4839

    Article  CAS  Google Scholar 

  23. Khanal S, Lu YH, Ahmed S, Ali M, Xu SA (2020) Synergistic effect of zeolite 4A on thermal, mechanical and flame retardant properties of intumescent flame retardant HDPE composites. Polym Testing 81:106177

    Article  CAS  Google Scholar 

  24. Kaeding W, Chu C, Young L, Weinstein B, Butter S (1981) Selective alkylation of toluene with methanol to produce para-xylene. J Catal 67:159–174

    Article  CAS  Google Scholar 

  25. Rahimi N, Karimzadeh R (2011) Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Appl Catal A Gen 398:1–17. https://doi.org/10.1016/j.apcata.2011.03.009

    Article  CAS  Google Scholar 

  26. Qiu Y, Wang L, Zhang XW, Liu GZ (2015) Different roles of CNTs in hierarchical HZSM-5 synthesis with hydrothermal and steam-assisted crystallization. RSC Adv 5:78238–78246. https://doi.org/10.1039/c5ra17071k

    Article  CAS  Google Scholar 

  27. Zeng S, Xu ST, Gao SS, Gao MB, Zhang WN, Wei YX, Liu ZM (2019) Differentiating diffusivity in different channels of ZSM-5 zeolite by pulsed field gradient (PFG) NMR. ChemCatChem 12:463–468. https://doi.org/10.1002/cctc.201901689

    Article  CAS  Google Scholar 

  28. Bourbigot S, Bras ML, Bréant P, Trémillon JM, Delobel R (1996) Zeolites: new synergistic agents for intumescent fire retardant thermoplastic formulations—criteria for the choice of the zeolite. Fire Mater 20:145–154

    Article  CAS  Google Scholar 

  29. Felipe RB, Michelle JCR, de Victor OR, Regina SVN, Simone PSR (2019) Synthesis and application of H-ZSM-5 zeolites with different levels of acidity as synergistic agents in flame retardant polymeric materials. Polymers (Basel) 11(12):2110. https://doi.org/10.3390/polym11122110

    Article  CAS  Google Scholar 

  30. Feng XM, Wei JL, Yin B, Yang MB (2012) Properties of flame retardant polypropylene with melamine-formaldehyde resin microencapsulated ammonium polyphosphate. China Synthetic Resin and Plastics 29(02):16–19

    CAS  Google Scholar 

  31. Groen JC, Peffer LAA, Moulijn JA, Perez-Ramirez J (2004) Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloid Surf A-Physicochem Eng Asp 241:53–58. https://doi.org/10.1016/j.colsurfa.2004.04.012

    Article  CAS  Google Scholar 

  32. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  33. Chai YQ, Zhao TB, Gao X, Zhang JJ (2018) Low cracking ratio of paraffin microcapsules shelled by hydroxyl terminated polydimethylsiloxane modified melamine-formaldehyde resin. Colloid Surf A-Physicochem Eng Asp 538:86–93. https://doi.org/10.1016/j.colsurfa.2017.10.078

    Article  CAS  Google Scholar 

  34. Zhou YX, Cui YX, Wang X, Zhang M, Gao YY, Wang HY (2021) Melamine-formaldehyde microcapsules encapsulating HEDP for sustained scale inhibition. Colloid Surf A-Physicochem Eng Asp 628:127361

    CAS  Google Scholar 

  35. Calzaferri G, Huber S, Maas H, Minkowski C (2003) Host–guest antenna materials. Angew Chem Int Ed 42(32):3732–3758

    Article  CAS  Google Scholar 

  36. Ma Q, Fu TJ, Wang YJ, Li H, Cui LP, Li Z (2020) Development of mesoporous ZSM-5 zeolite with microporosity preservation through induced desilication. J Mater Sci 55:11870–11890. https://doi.org/10.1007/s10853-020-04855-5

    Article  CAS  Google Scholar 

  37. Rodríguez-González L, Hermes F, Bertmer M, Rodríguez-Castellón E, Jiménez-López AU (2007) The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy. Appl Catal A 328:174–182. https://doi.org/10.1016/j.apcata.2007.06.003

    Article  CAS  Google Scholar 

  38. Groen JC, Moulijn JA, Pérez-Ramírez J (2005) Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication–dealumination. Microporous Mesoporous Mater 87:153–161. https://doi.org/10.1016/j.micromeso.2005.07.050

    Article  CAS  Google Scholar 

  39. Liu XD, Guo J, Tang WF, Li HF, Gu XY, Sun J, Zhang S (2019) Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan. Compos Part a-Appl S 119:291–298. https://doi.org/10.1016/j.compositesa.2019.02.009

    Article  CAS  Google Scholar 

  40. Xu WZ, Wang XL, Wu Y, Li W, Chen CY (2019) Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J Hazard Mater 363:138–151. https://doi.org/10.1016/j.jhazmat.2018.09.086

    Article  CAS  PubMed  Google Scholar 

  41. Tawiah B, Zhou YY, Yuen RKK, Sun J, Fei B (2020) Microporous boron based intumescent macrocycle flame retardant for poly (lactic acid) with excellent UV protection. Chem Eng J 402:126209. https://doi.org/10.1016/j.cej.2020.126209

    Article  CAS  Google Scholar 

  42. Yan HW, Wei JL, Yin B, Yang MB (2015) Effect of the surface modification of ammonium polyphosphate on the structure and property of melamine–formaldehyde resin microencapsulated ammonium polyphosphate and polypropylene flame retardant composites. Polym Bull 72:2725–2737

    Article  CAS  Google Scholar 

  43. **ong ZQ, Zhang Y, Du XY, Song PA, Fang ZP (2019) Green and scalable fabrication of core–shell biobased flame retardants for reducing flammability of polylactic acid. ACS Sustain Chem Eng 7:8954–8963. https://doi.org/10.1021/acssuschemeng.9b01016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the funding support from the Ningxia Key R&D plan, the open project of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering and First-class discipline construction (Chemical Engineering and Technology) in Ningxia University (Grant/Award Numbers are 2020BDE03004, 2020BEG03037, 2019-KF-17 and NXYLXK2017A04, respectively).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiyan Zhang or Faliang Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4282 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Lu, J., Yao, J. et al. The synergistic role of acidic molecular sieve on flame retardant performance in PLA/MF@APP composite. J Polym Res 29, 192 (2022). https://doi.org/10.1007/s10965-022-03037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03037-y

Keywords

Navigation