Log in

Preparation and property evaluations of PCL/PLA composite films

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Composite materials prepared from polylactic acid have been used more and more widely in many fields. However, PLA has high brittleness, which largely restricts its application. Blending PLA with polycaprolactone (PCL) helps improve the disadvantages of pure PLA. In this study, different molecular weights of PCL were used and blended with PLA in different proportions to form a composite film by melt blending. The mechanical properties, thermal properties, and water wettability of Composite films are evaluated to examine the influences of the relative molecular weight of PCL and PCL/PLA ratio. When the relative molecular weight of PCL is 50,000, Composite films have high stress, strain, hydrophilicity, thermal properties, and UV-resisting property, but their thermal properties are not affected. At a specific relative molecular weight of PCL and PCL/PLA ratio of 30/70, the composite films reach their maximum stress and exhibit high strain, good hydrophilicity, and UV transmittance lower than 10%. Moreover, the PCL/PLA ratio has a marginal effect on the thermal properties of the composite films. This research has certain significance for promoting the application of PCL/PLA composite film in many fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Correa-Pacheco ZN, Jimenez-Perez JL, Sabino MA, Cruz-Orea A, Loaiza M (2015) Photothermal and morphological characterization of PLA/PCL polymer blends. Appl Phys A Mater Sci Process 120:1323–1329

    Article  CAS  Google Scholar 

  2. Chen JC, Chueh H, Tseng H, Huang SL (2003) Preparation and characterization of biodegradable PLA polymeric blends. BIOMATERIALS 24:1167–1173

    Article  CAS  PubMed  Google Scholar 

  3. Van deVelde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:433–442

    Article  Google Scholar 

  4. Pantani R, Santis FD, Sorrentino A, Maio FD, Titomanlio G (2010) Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab 95:1148–1159

    Article  CAS  Google Scholar 

  5. Koo H, ** G, Kang H, Lee Y, Nam H, Jang H, Park J (2009) A new biodegradable crosslinked polyethylene oxide sulfide (PEOS) hydrogel for controlled drug release. Int J Pharm 374:58–65

    Article  CAS  PubMed  Google Scholar 

  6. Park S, Lim S, Shin T, Choi H, Jhon M (2001) Viscoelasticity of biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(ethylene oxide). Polymer 42:5737–5742

    Article  CAS  Google Scholar 

  7. Tian H, Tang Z, Zhuang X, Chen X, **g X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    Article  CAS  Google Scholar 

  8. Adhikari R, Bristow KL, Casey PS, Freischmidt G, Hornbuckle JW, Adhikari B (2016) Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency. Agr Water Manage 169:1–13

    Article  Google Scholar 

  9. Arrieta MP, Peponi L (2017) Polyurethane based on PLA and PCL incorporated with catechin: structural, thermal and mechanical characterization. Eur Polym J 89:174–184

    Article  CAS  Google Scholar 

  10. Brooks T (1996) Method and apparatus of recycling previously used agricultural plastic film mulch. J Clean Prod 4:137–138

    Article  Google Scholar 

  11. Choa JW, Chun BC, Park JS (2001) Ultraviolet reflective and mechanical properties of polyethylene mulching films. Eur Polym J 37:1227–1232

    Article  Google Scholar 

  12. Cuello JP, Hwang HY, Gutierrez J, Sang YK, Kim PJ (2015) Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Appl Soil Ecol 91:48–57

    Article  Google Scholar 

  13. Chao JL, Fu JW, Grae HD, Ze Z, Robert G, Lu W (2017) Comprehensive mechanical characterization of PLA fabric combined with PCL to form a composite structure vascular graft. J Mech Behav Biomed Mater 69:39–49

    Article  Google Scholar 

  14. Hayashi N, Ono R, Uchida S (2015) Growth enhancement of plant by plasma and UV light irradiation to seeds. J Photopolym Sci Technol 28:445–448

    Article  CAS  Google Scholar 

  15. Christiane P, Marina R, Lyngstadaas SP, Ellingsen JE, Monjo M (2010) In vivo performance of titanium implants functionalized with eicosapentaenoic acid and UV irradiation. J Biomed Mater Res A 96:83–92

    Google Scholar 

  16. Lang Z, Zhongxing G, Weijun Z (2019) Preparation, characterization, and reaction kinetics of poly(lactic acid)/amidated graphene oxide nanocomposites based on reactive extrusion process. J Polym Res 26:78

    Article  Google Scholar 

  17. Surya R, Sudheer K, Sushanta KS, Smita M, Sanjay KN (2018) PLA/ESO/MWCNT nanocomposite:a study on mechanical,thermal and electroactive shape memory properties. J Polym Res 25:126

    Article  Google Scholar 

  18. Zehua Q, Juan B, **aoyue H (2018) Probing the nanomechanical properties of PLA/PC blends compatibilized with compatibilizer and nucleation agent by AFM. J Polym Res 25:138

    Article  Google Scholar 

  19. Ivan K, Jaroslav K, Ludmila K (2016) Crystallization and thermal properties of melt-drawn PCL/PLA microfibrillar composites. J Therm Anal Calorim 124:799–805

    Article  Google Scholar 

  20. Campos AD, Marconato JC, Martins-Franchetti SM (2011) Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate. Braz Arch Biol Technol 54:1367–1378

    Article  Google Scholar 

  21. Guarás MP, Alvarez VA, Ludueña LN (2015) Processing and characterization of thermoplastic starch/polycaprolactone/compatibilizer ternary blends for packaging applications. J Polym Res 22:165

    Article  Google Scholar 

  22. Zafer U, Adile Ö (2018) Preparation of a star-type telechelic macrophotoinitiator of poly(ε-caprolactone) and its use in photoinduced free radical promoted cationic polymerization. J Polym Res 25:245

    Article  Google Scholar 

  23. Broz M, Vanderhart D, Washburn N (2003) Structure and mechanical properties of poly(D,L-lactic acid)/poly(epsilon-caprolactone) blends. Biomaterials 24:4181–4190

    Article  CAS  PubMed  Google Scholar 

  24. Plackett D, Holm V, Johansen P, Ndoni S, Nielsen P, Malm TS, Dergard AS, VerstichelZ S (2006) Characterization of L-potylactide and L-polylactide-polycaprolactone co-polymer films for use in cheese-packaging applications. Packag Technol Sci 19:1–24

    Article  CAS  Google Scholar 

  25. Chin SW, Hsin TL, Chi HT (2018) Polyester-based green renewable eco-composites by solar energy tube processing: characterization and assessment of properties. J Polym Res 25:240

    Article  Google Scholar 

  26. Antonio JG, Joan S, Joaquim C (2017) Fabrication of PCL/PLA composite tube for stent manufacturing. Procedia CIRP 65:231–235

    Article  Google Scholar 

  27. Chao**g L, Fujun W, Peifeng C, Ze Z, Robert G, Lu W (2017) Preventing collapsing of vascular scaffolds: the mechanical behavior of PLA/PCL composite structure prostheses during in vitro degradation. J Mech Behav Biomed 75:455–462

    Article  Google Scholar 

  28. Karami Z, Rezaeian I, Zahedi P, Abdollahi M (2013) Preparation and performance evaluations of electrospun poly(ε-caprolactone), poly(lactic acid), and their hybrid (50/50) nanofibrous mats containing thymol as an herbal drug for effective wound healing. J Appl Polym Sci 129:756–766

    Article  CAS  Google Scholar 

  29. Mittal V, Akhtar T, Matsko N (2015) Mechanical, thermal, rheological and morphological properties of binary and ternary blends of PLA, TPS and PCL. Macromol Mater Eng 300:423–435

    Article  CAS  Google Scholar 

  30. Jain S, Reddy MM, Mohanty AK, Misra M, Ghosh AK (2010) A new biodegradable flexible composite sheet from poly(lactic acid)/poly(ε-caprolactone) blends and micro-talc. Macromol Mater Eng 295:750–762

    Article  CAS  Google Scholar 

  31. **uhua L, Baolin H, **u Y, Ligong Z, Fangfang H (2016) The soil water dynamics and hydraulic processes of crops with plastic film mulching in terraced dryland fields on the loess plateau. Environ Earth Sci 75:809

    Article  Google Scholar 

  32. Luyt AS, Gasmi S (2016) Influence of blending and blend morphology on the thermal properties and crystallization behaviour of PLA and PCL in PLA/PCL blends. J Mater Sci 51:4670–4681

    Article  CAS  Google Scholar 

  33. Zefeng M, Yubo M, Lizhen Q, Jixiang L, Haijia S (2016) Preparation and characteristics of biodegradable mulching films based on fermentation industry wastes. Int Biodeterior Biodegradation 111:54–61

    Article  Google Scholar 

  34. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  Google Scholar 

  35. Boubkeur SB, Abderrahmane H, Yves G, Isabelle P (2017) Organomontmorillonite/graphene-PLA/PCL nanofilled blends: new strategy to enhance the functional properties of PLA/PCL blend. Appl Clay Sci 139:81–91

    Article  Google Scholar 

  36. Mostafa S, Majid S, Sara K, Ahmad O, Amir K, Babak S (2018) In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects. Nanomed- Nanotechnol 14:2061–2073

    Article  Google Scholar 

  37. Roberto S, Francesco L (2018) Properties-morphology relationships in electrospun mats based on polylactic acid and graphene nanoplatelets. Compos Part A: Appl S 108:23–29

    Article  Google Scholar 

  38. Mofokeng JP, Kelnar I, Luyt AS (2016) Effect of layered silicates on the thermal stability of PCL/PLA microfibrillar composites. Polym Test 50:9–14

    Article  CAS  Google Scholar 

  39. Mobasseri SA, Terenghi G, Downes S (2014) Schwann cell interactions with polymer films are affected by groove geometry and film hydrophilicity. Biomed Mater 9:5

    Article  Google Scholar 

  40. Navarro-Baena I, Sessini V, Dominici F, Torre L, Kenny JM, Peponi L (2016) Design of biodegradable blends based on PLA and PCL: from morphological, thermal and mechanical studies to shape memory behavior. Polym Degrad Stab 132:97–108

    Article  CAS  Google Scholar 

  41. Qingqing Y, Jaqueline GLC, Tao X, Jacob MM, Paulo HSP, Hao F, Hongli S (2017) Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 115:115–127

    Article  Google Scholar 

  42. Ostafinska A, Fortelny I, Nevoralova M, Hodan J, Kredatusova J, Slouf M (2015) Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv 5:98971–98982

    Article  CAS  Google Scholar 

  43. Phromma W, Magaraphan R (2013) Morphology and mechanical properties of natural rubber-PCL Core-Shell/PLA composites. Adv Mater Res 747:745–748

    Article  CAS  Google Scholar 

  44. Monticelli O, Calabrese M, Gardella L, Fina A, Gioffredi E (2014) Silsesquioxanes: novel compatibilizing agents for tuning the microstructure and properties of PLA/PCL immiscible blends. Eur Polym J 58:69–78

    Article  CAS  Google Scholar 

  45. Takayama T, Todo M (2006) Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. J Mater Sci 41:4989–4992

    Article  CAS  Google Scholar 

  46. Zhao N, Lv ZR, Ma J, Zhu CW, Li Q (2019) Fabrication of hydrophilic small diameter vascular foam scaffolds of poly(epsilon-caprolactone)/polylactic blend by sodium hydroxide solution. Eur Polymer 110:31–40

    Article  CAS  Google Scholar 

  47. Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks polylactide (PLA) production. Polym Degrad Stab 80:403–419

    Article  CAS  Google Scholar 

  48. Wachirahuttapong S, Thongpin C, Sombatsompop N (2016) Effect of PCL and compatibility contents on the morphology, crystallization and mechanical properties of PLA/PCL blends. Energy Procedia 89:198–206

    Article  CAS  Google Scholar 

  49. Mohammed AK, Hanan M, Jürgen K (2018) Broadband magnetic composite energy harvester. Adv Eng Mater 20:1–10

    Google Scholar 

  50. Watanabe K, Yamada N, Takeuchi Y (2006) Oxidative DNA damage in cucumber cotyledons irradiated with ultraviolet light. J Plant Res 119:239–246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Tian** (18JCQNJC03400, 18JCQNJC72600), the Natural Science Foundation of Fujian (2018 J01504, 2018 J01505), the Open Project Program of Fujian Key Laboratory of Novel Functional Fibers and Materials (Minjiang University), China (No. FKLTFM1710, FKLTFM 1722), and the National Natural Science Foundation of China (grant number 11702187). This study is also supported by the Opening Project of Green Dyeing and Finishing Engineering Research Center of Fujian University (2017001A, 2017001B, and 2017002B) and the Program for Innovative Research Team in University of Tian** (TD13-5043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Horng Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, TT., Zhang, H., Huang, SY. et al. Preparation and property evaluations of PCL/PLA composite films. J Polym Res 28, 156 (2021). https://doi.org/10.1007/s10965-021-02439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02439-8

Keywords

Navigation