Log in

Electrospun polyphenylquinoxaline fibrous membrane: a versatile filtering medium for separation of highly alkaline aqueous red mud pollutant

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Electrospun polyphenylquinoxaline (PPQ) ultrafine non-woven fibrous membrane (UFM) has been successfully used as the filtering medium for the separation of highly alkaline aqueous red mud (RM) slurry (pH = 13.0 at 21.5 °C), known as the industrial waste during production of alumina. For this purpose, the PPQ solution was prepared by dissolving the PPQ resin derived from 1,4-bis(4-benzilyloxy)benzene (DBOB) and 3,3′,4,4′-tetraaminodiphenylether (TADPE) in N-methyl-2-pyrrolidone (NMP) at a solid content of 8 wt%. Then, the PPQ UFM was fabricated by a one-step ES procedure. For comparison, the polyimide (PI) UFM, poly(pyromellitic dianhydride-co-4,4′-oxydianiline) (PMDA-ODA, PI-ref) was made by a two-step ES procedure. The obtained flexible and tough PPQ UFM was used as the filter for the separation of highly alkaline aqueous RM slurry. During the separation process, the PPQ UFM exhibited excellent stability in the aqueous alkaline environments of RM slurry either at room temperature (pH = 13.0 at 21.5 °C) or at higher processing temperature (pH = 12.1 at 60.5 °C). RM powder was efficiently separated from the slurry via the PPQ UFM and easily stripped from the membrane. Water contact angle (WCA) measurements revealed the hydrophobic nature of the PPQ UFM (WCA = 113.4° for pure water and WCA = 128.4° for aqueous sodium hydroxide solution at a solid content of 20 wt%). Comparatively, PI-ref (PMDA-ODA) UFM exhibited poor stability in the high-temperature alkaline environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang P, Liu DY (2012) Physical and Chemical Properties of Sintering Red Mud and Bayer Red Mud and the Implications for Beneficial Utilization. Materials 5(10):1800–1810. https://doi.org/10.3390/ma5101800

    Article  CAS  PubMed Central  Google Scholar 

  2. Ghosh I, Guha S, Balasubramaniam R, Ramesh Kumar AV (2011) Leaching of metals from fresh and sintered red mud. J Hazard Mater 185(2–3):662–668

    Article  CAS  Google Scholar 

  3. Novais RM, Carvalheiras J, Seabra MP, Pullar RC, Labrincha JA (2018) Innovative application for bauxite residue: Red mud-based inorganic polymer spheres as pH regulators. J Hazard Mater 358:69–81. https://doi.org/10.1016/j.jhazmat.2018.06.047

    Article  CAS  PubMed  Google Scholar 

  4. Zhou YF, Haynes RJ (2012) A Comparison of Water Treatment Sludge and Red Mud as Adsorbents of As and Se in Aqueous Solution and Their Capacity for Desorption and Regeneration. Water Air Soil Pollut 223(9):5563–5573. https://doi.org/10.1007/s11270-012-1296-0

    Article  CAS  Google Scholar 

  5. Brunori C, Cremisini C, Massanisso P, Pinto V, Torricelli L (2005) Reuse of a treated red mud bauxite waste: studies on environmental compatibility. J Hazard Mater 117(1):55–63. https://doi.org/10.1016/j.jhazmat.2004.09.010

    Article  CAS  PubMed  Google Scholar 

  6. Reddy NG, Chandra KS (2014) Characterization and comprehensive utilization of red mud—An overview. Int J Sci Res Develop 2(1):670–673

    CAS  Google Scholar 

  7. Sutar H, Mishra SC, Sahoo SK, Chakraverty AP, Maharana HS (2014) Progress of Red Mud Utilization: An Overview. Am Chem Sci J 4(3):255–279. https://doi.org/10.9734/ACSJ/2014/7258

    Article  Google Scholar 

  8. Narayanan RP, Ma LC, Kazantzis NK, Emmert MH (2018) Cost Analysis as a Tool for the Development of Sc Recovery Processes from Bauxite Residue (Red Mud). ACS Sustainable Chem Eng 6(4):5333–5341. https://doi.org/10.1021/acssuschemeng.8b00107

    Article  CAS  Google Scholar 

  9. Narayanan RP, Kazantzis NK, Emmert MH (2018) Selective Process Steps for the Recovery of Scandium from Jamaican Bauxite Residue (Red Mud). ACS Sustainable Chem Eng 6(1):1478–1488. https://doi.org/10.1021/acssuschemeng.7b03968

    Article  CAS  Google Scholar 

  10. Zhu G, Dufresne A, Lin N (2018) High-Adsorption, Self-Extinguishing, Thermal, and Acoustic-Resistance Aerogels Based on Organic and Inorganic Waste Valorization from Cellulose Nanocrystals and Red Mud. ACS Sustainable Chem Eng 6(5):7168–7180. https://doi.org/10.1021/acssuschemeng.8b01244

    Article  CAS  Google Scholar 

  11. Kilic VY, Gunay E, Marsoglu M (2014) From Hazardous Red Mud Waste to Non-Hazardous Commercial Products. Mater Test 56(2):140–144. https://doi.org/10.3139/120.110536

    Article  CAS  Google Scholar 

  12. Hua YM, Heal KV, Friesl-Hani W (2017) The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review. J Hazard Mater 325:17–30. https://doi.org/10.1016/j.jhazmat.2016.11.073

    Article  CAS  PubMed  Google Scholar 

  13. Hu ZP, Gao ZM, Liu XY, Yuan ZY (2018) High-surface-area activated red mud for efficient removal of methylene blue from wastewater. Adsorp Sci Technol 36(1–2):62–79

    Article  Google Scholar 

  14. Garg A, Yadav H (2015) Study of red mud as an alternative building material for interlocking block manufacturing in construction industry. Int J Mater Sci Eng 3(4):295–300

    Google Scholar 

  15. Avery Q, Wilson K (2013) Red mud pressure filtration for the alumina refinerys bauxite residue tailings disposal. In: Jewell R, Fourie AB, Caldwell J, Pimenta J (eds) Proceedings of the 16th International Seminar on Paste and Thickened Tailings. Australian Centre for Geomechanics, Perth, pp 225–238

    Chapter  Google Scholar 

  16. Leontaridls N, Marinos-Kourls D (1992) Grecian red mud — thickening and filtration parameters and process design. Filtra Separa 29(1):51–56. https://doi.org/10.1016/0015-1882(92)80304-2

    Article  Google Scholar 

  17. Akay G, Keskinler B, Cakici A, Danis U (1998) Phosphate removal from water by red mud using crossflow microfiltration. Wat Res 32(3):717–726. https://doi.org/10.1016/S0043-1354(97)00236-4

    Article  CAS  Google Scholar 

  18. Li RB, Li XL, Wang DX, Liu Y, Zhang TA (2018) Calcification reaction of red mud slurry with lime. Powder Technol 333:277–285. https://doi.org/10.1016/j.powtec.2018.04.031

    Article  CAS  Google Scholar 

  19. Borra CR, Blanpain B, Binnemans K, Gerven TV (2016) Recovery of Rare Earths and Other Valuable Metals From Bauxite Residue (Red Mud): A Review. J Sustain Metall 2(4):365–386. https://doi.org/10.1007/s40831-016-0068-2

    Article  Google Scholar 

  20. Ma WJ, Zhang MJ, Liu ZC, Kang MM, Huang CB, Fu GD (2019) Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation. J Membr Sci 570–571:303–313

    Article  Google Scholar 

  21. Guarino V, Varesano A (2018) 2018. In: Focarete ML, Gualandi C, Ramakrishna S (eds) Filtering Media by Electrospinning- Next generation membranes for separation applications. Springer, Gewerbestrasse, pp 1–24

    Google Scholar 

  22. Stephans LE, Myles A, Thomas RR (2000) Kinetics of Alkaline Hydrolysis of a Polyimide Surface. Langmuir 16(10):4706–4710. https://doi.org/10.1021/la991105m

    Article  CAS  Google Scholar 

  23. Mokhena TC, Jacobs NV, Luyt AS (2018) Nanofibrous alginate membrane coated with cellulose nanowhiskers for water purification. Cellulose 25(1):417–427. https://doi.org/10.1007/s10570-017-1541-1

    Article  CAS  Google Scholar 

  24. Hergenrother PM (2003) The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: An Overview. High Perform Polym 15(1):3–45. https://doi.org/10.1177/095400830301500101

    Article  CAS  Google Scholar 

  25. Seel DC, Benicewicz BC (2012) J Membr Sci 405–406:57–67

    Article  Google Scholar 

  26. Li C, Li Z, Liu JG, Yang HX, Yang SY (2010a) J Macromol Sci, Part A. Pure Appl Chem 47:248–253

    CAS  Google Scholar 

  27. Li C, Li Z, Liu JG, Yang HX, Yang SY (2010b) Fluorene-bridged polyphenylquinoxalines with high solubility and good thermal stability: Synthesis and properties. Chin J Polym Sci 29(6):971–980. https://doi.org/10.1007/s10118-010-1011-9

    Article  CAS  Google Scholar 

  28. Li C, Li Z, Liu JG, Zhao XJ, Yang HX, Yang SY (2010) Synthesis and characterization of organo-soluble thioether-bridged polyphenylquinoxalines with ultra-high refractive indices and low birefringences. Polymer 51(17):3851–3858. https://doi.org/10.1016/j.polymer.2010.06.035

    Article  CAS  Google Scholar 

  29. Ni HJ, Liu JG, Yang SY (2016) Fluorinated Poly(phenylquinoxaline)s with Low Dielectric Constants and High Hydrolytic Stability: Synthesis and Characterization. Chem Lett 45(1):75–77. https://doi.org/10.1246/cl.150921

    Article  CAS  Google Scholar 

  30. Zhang XM, Ni HJ, Liu JG, Yang SY (2016) Enhancement of Thermal Stability (Tg ≥ 260 °C) of Ether-bridged Fluorinated Poly(phenylquinoxaline)s with Excellent Dielectric Properties and Water Repellent Characteristics. Chem Lett 45(6):607–609. https://doi.org/10.1246/cl.160185

    Article  CAS  Google Scholar 

  31. Zhang XM, Liu JG, Yang SY (2016) A review on recent progress of R&D for high-temperature resistant polymer dielectrics and their applications in electrical and electronic insulation. Rev Adv Mater Sci 46:22–38

    Google Scholar 

  32. Liu JG (2016) Polyphenylquinoxalines. In: Olabisi O, Adewale K (eds) Handbook of Thermoplastics Second Edi. CRC Press, Boca Raton, pp 533–569

    Google Scholar 

  33. Guo CY, Yin LM, Liu JG, Wang XK, Zhang N, Qi L, Zhang Y, Wu X, Zhang XM (2019) Electrospun Polyphenylquinoxaline Ultraline Non-woven Fibrous Membranes with Excellent Thermal and Alkaline Resistance: Preparation and Characterization. Fibers Polym 20(12):2485–2492. https://doi.org/10.1007/s12221-019-9349-2

    Article  CAS  Google Scholar 

  34. Guo CY, Wu X, Liu JG, Zhang Y, Zhang XM (2018) Preparation and Properties of High-whiteness Polyimide Ultrafine Fabrics by Electrospinning from Organo-soluble Semi-alicyclic Polyimide Resins. J Photopolym Sci Technol 31(1):27–36. https://doi.org/10.2494/photopolymer.31.27

    Article  CAS  Google Scholar 

  35. Guo CY, Liu JG, Yin LM, Huangfu MG, Zhang Y, Wu X, Zhang XM (2018) Preparation and Characterization of Electrospun Polyimide Microfibrous Mats with High Whiteness and High Thermal Stability from Organo-soluble Polyimides Containing Rigid-rod Moieties. Fibers Polym 19(8):1706–1714. https://doi.org/10.1007/s12221-018-8270-4

    Article  CAS  Google Scholar 

  36. Qi L, Guo CY, Huangfu MG, Zhang Y, Yin LM, Wu L, Liu JG, Zhang XM (2019) Enhancement of Solvent Resistance of Polyimide Electrospun Mat via the UV-Assisted Electrospinning and Photosensitive Varnish. Polymers 11(12):2055. https://doi.org/10.3390/polym11122055

    Article  CAS  PubMed Central  Google Scholar 

  37. Gong G, Gao K, Wu J, Sun N, Zhou C, Zhao Y, Jiang L (2015) A highly durable silica/polyimide superhydrophobic nanocomposite film with excellent thermal stability and abrasion-resistant performance. J Mater Chem A 3(2):713–718. https://doi.org/10.1039/C4TA04442H

    Article  CAS  Google Scholar 

  38. El-Mahdy A, Kuo CH, Alshehri AA, Kim J, Young C, Yamauchi Y, Kuo SW (2018) Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO 2 uptake and energy storage. J Mater Chem A 6(40):19532–19541. https://doi.org/10.1039/C8TA04781B

    Article  CAS  Google Scholar 

  39. EL-Mahdy AFM, Young C, Kim J, You J, Yamauchi Y, Kuo SW (2019) Hollow Microspherical and Microtubular [3 + 3] Carbazole-Based Covalent Organic Frameworks and Their Gas and Energy Storage Applications. ACS Appl Mater Interf 11(9):9343–9354

    Article  CAS  Google Scholar 

  40. EL-Mahdy AFM, Liu TE, Kuo SW (2020) Direct synthesis of nitrogen-doped mesoporous carbons from triazine-functionalized resol for CO2 uptake and highly efficient removal of dyes. J Hazard Mater 391:122163. https://doi.org/10.1016/j.jhazmat.2020.122163

    Article  CAS  PubMed  Google Scholar 

  41. EL-Mahdy AFM, Hung YH, Mansoure TH, Yu HH, Hsu YS, Wu KSW, Kuo SW (2019) Synthesis of [3 + 3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage. J Taiwan Inst Chem Eng 103:199–208. https://doi.org/10.1016/j.jtice.2019.07.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the Key Technology Research and Development Program of Shandong (No. 2019JZZY020235) and Fundamental Research Funds of China University of Geosciences (No. 2652017345) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **-gang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 68975145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Lm., Guo, Cy., Qi, L. et al. Electrospun polyphenylquinoxaline fibrous membrane: a versatile filtering medium for separation of highly alkaline aqueous red mud pollutant. J Polym Res 27, 321 (2020). https://doi.org/10.1007/s10965-020-02281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02281-4

Keywords

Navigation