Log in

Exploring the effect of alkyl end group on poly(L-lactide) oligo-esters. Synthesis and characterization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(L-lactide) (PLLA) oligo-esters with α-hydroxyl-ω-alkyl (alkyl = −CH2−[CH2−CH2]m−CH3, where m = 1, 2, 4, 5, 6, 7, 8, 9, and 10) end groups were synthesized by ring-opening polymerization of L-lactide (L-LA) catalyzed by tin(II) 2-ethylhexanoate Sn(Oct)2 in the presence of aliphatic alcohols as initiators (HO−CH2−[CH2−CH2]m−CH3, where m = 1, 2, 4, 5, 6, 7, 8, 9, and 10). High yields (~ 62 to 71%) and M n(NMR) in the range of 2120–2450 Da (PLLA) were obtained. Effects of alkyl end groups on thermal properties of the oligo-esters were analyzed by DSC, TGA and SAXS. Glass transition temperature (T g) gradually decreases with increase in the percent of−CH2−[CH2−CH2]m−CH3 end group, as results alkyl end group provides most flexibility to PLLA. An important effect of alkyl end group on a double cold crystallization (T c1 and T c2) was observed, and is directly related with the segregation phase between alkyl end group and PLLA. TGA analysis revealed that PLLA oligo-esters are more thermally stable with docosyl (−C22H45) respect to the butyl (−C4H9) end group, probably is due to steric hindrance of the end group (docosyl respect to butyl) toward intermolecular and intramolecular transesterification. SAXS analysis showed that alkyl end group as docosyl restricted the growth of lamellae thickness (D) due to steric hindrance. Characterization of hydroxyl and alkyl end groups in the PLLA oligo-esters was determined by MALDI-TOF, GPC, FT-IR and 1 H and 13 C NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fukushima K, Kimura Y (2006) Polym Int 55:626–642

    Article  CAS  Google Scholar 

  2. Stolt M, Krasowska K, Rutkowska M, Janik H, Rosling A, Södergård A (2005) Polym Int 54:362–368

    Article  CAS  Google Scholar 

  3. Korhonen H, Helminen A, Seppälä JV (2001) Polymer 42:7541–7549

    Article  CAS  Google Scholar 

  4. Gottschalk C, Frey H (2006) Macromolecules 39:1719–1723

    Article  CAS  Google Scholar 

  5. Miola-Delaite C, Hamaide T, Spitz R (1999) Macromol Chem Phys 200:1771–1778

    Article  CAS  Google Scholar 

  6. Kowalski A, Duda A, Penczek S (2000) Macromolecules 33:689–695

    Article  CAS  Google Scholar 

  7. Fan Y, Chen G, Tanaka J, Tateishi T (2005) Biomacromolecules 6:3051–3056

    Article  CAS  Google Scholar 

  8. Spasova M, Mespouille L, Coulembier O, Paneva D, Manolova N, Rashkov L, Dubois P (2009) Biomacromolecules 10:1217–1223

    Article  CAS  Google Scholar 

  9. Karanikolopoulos N, Zamurovic M, Pitsikalis M, Hadjichristidis N (2010) Biomacromolecules 11:430–438

    Article  CAS  Google Scholar 

  10. Wang Y, Hillmyer MA (2001) J Polym Sci Part A Polym Chem 39:2755–2766

    Article  CAS  Google Scholar 

  11. Abayasinghe NK, Glaser S, Prasanna K, Perera U, DWJr S (2005) J Polym Sci Part A Polym Chem 43:5257–5266

    Article  CAS  Google Scholar 

  12. Kurokawa K, Yamashita K, Doi Y, Abe H (2006) Polym Degrad Stab 91:1300–1310

    Article  CAS  Google Scholar 

  13. Kurokawa K, Yamashita K, Doi Y, Abe H (2008) Biomacromolecules 9:1071–1078

    Article  CAS  Google Scholar 

  14. Kobori Y, Iwata T, Doi Y, Abe H (2004) Biomacromolecules 5:530–536

    Article  CAS  Google Scholar 

  15. Ouchi T, Ohya Y (2004) J Polym Sci Part A Polym Chem 42:453–462

    Article  CAS  Google Scholar 

  16. Storey RF, Sherman JW (2002) Macromolecules 35:1504–1512

    Article  CAS  Google Scholar 

  17. Storey RF, Mullen BD, Desai GS, Sherman JW, Tang CN (2002) J Polymer Sciences. Part A: Polymer Chemistry 40:3434–3442

    Article  CAS  Google Scholar 

  18. Huang C-H, Wang F-C, Ko B-T, Yu T-L, Lin C-C (2001) Macromolecules 34:356–361

    Article  CAS  Google Scholar 

  19. Báez JE, Martínez-Richa A, Marcos-Fernández A (2005) Macromolecules 38:1599–1608

    Article  Google Scholar 

  20. Báez JE, Martínez-Rosales M, Martínez-Richa A (2003) Polymer 44:6767–6772

    Article  Google Scholar 

  21. Finne A, Albertsson A-C (2004) J Polym Sci Part A Polym Chem 42:444–452

    Article  CAS  Google Scholar 

  22. Chen H-L, Ko B-T, Huang B-H, Lin C-C (2001) Organometallics 20:5076–5083

    Article  CAS  Google Scholar 

  23. Kricheldorf HR, Hachmann-Thiessen H, Schwarz G (2004) Biomacromolecules 5:492–496

    Article  CAS  Google Scholar 

  24. Lemmouchi Y, Perry MC, Amass AJ, Chakraborty K, Schué F (2007) J Polym Sci Part A Polym Chem 45:2235–2245

    Article  CAS  Google Scholar 

  25. Messman JM, Scheuer AD, Storey RF (2005) Polymer 46:3628–3638

    Article  CAS  Google Scholar 

  26. Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds. John Wiley & Sons, New Jersey

    Google Scholar 

  27. Qian H, Bei J, Wang S (2000) Polym Degrad Stab 68:423–429

    Article  CAS  Google Scholar 

  28. Huang M-H, Li S, Coudane J, Vert M (2003) Macromol Chem Phys 204:1994–2001

    Article  CAS  Google Scholar 

  29. Takizawa K, Nulwala H, Hu J, Yoshinaga K, Hawker CJ (2008) J Polym Sci. Part A: Polym Chem 46:5977–5990

    Article  CAS  Google Scholar 

  30. Gottschalk C, Wolf F, Frey H (2007) Macromol Chem Phys 208:1657–1665

    Article  CAS  Google Scholar 

  31. Castillo RV, Müller AJ, Lin M-C, Chen H-L, Jeng U-S, Hillmyer MA (2008) Macromolecules 41:6154–6164

    Article  CAS  Google Scholar 

  32. Ring JO, Thomann R, Mülhaupt R, Raquez J-M, Degée P, Dubois P (2007) Macromol. Chem Phys 208:896–902

    CAS  Google Scholar 

  33. Jamshidi K, Hyon S-H, Ikada Y (1988) Polymer 29:2229–2234

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.E.B. is much indebted to the Instituto de Ciencia y Tecnología de Polímeros (CSIC), Consejo Nacional de Ciencia y Tecnología (CONACYT, México) and Sistema Nacional de Investigadores (SNI, México). J.E.B. and A.M.F thanks to PURAC Biomaterials for the donation of L-lactide (L-LA) monomer. A.M.F. and J.E.B. thanks the Ministerio de Educación y Ciencia for its financial support in accessing the Synchrotron, and François Fauth and Ana Pastor for their help on the beamline BM16 (Grenoble, France). J.E.B. thanks to Jesús L. Pablos and Mario Luzón for obtaining GPC chromatograms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Báez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Báez, J.E., Marcos-Fernández, Á. & Galindo-Iranzo, P. Exploring the effect of alkyl end group on poly(L-lactide) oligo-esters. Synthesis and characterization. J Polym Res 18, 1137–1146 (2011). https://doi.org/10.1007/s10965-010-9517-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9517-y

Keywords

Navigation