Log in

From Gårding’s Cones to p-Convex Hypersurfaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We consider cones discovered by Gårding in 1959. They play the fundamental role in the modern theory of fully nonlinear second-order partial differential equations. A new classification of symmetric matrices is presented based on the m-positiveness property. Such a classification establishes a new trend in geometry, generating a notion of m-convex hypersurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Andrews, “Contraction of convex hypersurfaces in Euclidian space,” Calc. Var. Part. Differ. Equ., 2, 151–171 (1994).

    Article  MATH  Google Scholar 

  2. L. Caffarelli, L. Nirenberg, and J. Spruck, “The Dirichlet problem for nonlinear second-order elliptic equations. III,” Acta Math., 155, 261–301 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Caffarelli, L. Nirenberg, and J. Spruck, “Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces,” Commun. Pure Appl. Math., 41, 47–70 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Caffarelli and L. Silvestre, “Smooth approximations to solutions of nonconvex fully nonlinear elliptic equations,” In: AMS Transl. — Ser. 2. Adv. Math. Sci., 229, 67–85 (2010).

  5. H. Dong, N. V. Krylov, and X. Li, “On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains,” Algebra i Analiz, 24, No. 1, 53–94 (2012).

    MathSciNet  Google Scholar 

  6. L. C. Evans, “Classical solutions of fully nonlinear convex second-order elliptic equations,” Commun. Pure Appl. Math., 25, 333–363 (1982).

    Article  Google Scholar 

  7. N. V. Filimonenkova, “On the classical solvability of the Dirichlet problem for nondegenerate m-Hessian equations,” J. Math. Sci., 178, 666–694 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Gårding, “An inequality for hyperbolic polynomials,” J. Math. Mech., 8, 957–965 (1959).

    MATH  MathSciNet  Google Scholar 

  9. N. M. Ivochkina, “A description of the stability cones generated by differential operators of Monge–Ampere type,” Sb. Math., 50, No. 1, 259–268 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  10. N. M. Ivochkina, “Solution of the Dirichlet problem for some equations of Monge–Ampere type,” Sb. Math., 56, No. 2, 403–415 (1987).

    Article  MATH  Google Scholar 

  11. N. M. Ivochkina, “The integral method of barrier functions and the Dirichlet problem for equations with operator of Monge–Ampere type,” Sb. Math., 40, No. 2, 179–192 (1981).

    Article  MATH  Google Scholar 

  12. N. M. Ivochkina, “Solution of the Dirichlet problem for curvature equations of order m,” Sb. Math., 67, No. 2, 317–339 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  13. N. M. Ivochkina, “The Dirichlet problem for the equations of curvature of order m,” Leningr. Math. J., 2, No. 3, 631–654 (1991).

    MATH  MathSciNet  Google Scholar 

  14. N. M. Ivochkina, “Geometric evolution equations preserving convexity,” AMS Transl. — Ser. 2. Adv. Math. Sci., 220, 191–121 (2007).

    MathSciNet  Google Scholar 

  15. N. M. Ivochkina, Th. Nehring, and F. Tomi. “Evolution of star-shaped hypersurfaces by nonhomogeneous curvature functions,” St. Petersburg Math. J., 12, No. 1, 145–160 (2001).

    MathSciNet  Google Scholar 

  16. N. M. Ivochkina, N. Trudinger, X.-J. Wang, “The Dirichlet problem for degenerate Hessian equations,” Commun. Part. Differ. Equ., 29, 219–235 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  17. N. V. Krylov, “Boundedly inhomogeneous elliptic and parabolic equations in a domain,” Izv. Akad. Nauk. SSSR. Ser. Mat., 22, 67–97 (1984).

    MATH  Google Scholar 

  18. N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of Second Order, Reidel, Dordrecht (1987).

    Book  MATH  Google Scholar 

  19. M. Lin and N. Trudinger, “On some inequalities for elementary symmetric functions,” Bull. Aust. Math. Soc., 50, 317–326 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  20. N. S. Trudinger, “The Dirichlet problem for the prescribed curvature equations,” Arch. Ration. Mech. Anal., 111, 153–179 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Urbas, “On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures,” Math. Z., 205, 355–372 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Urbas, “An expansion of convex hypersurfaces,” J. Differ. Geom., 33, 91–125 (1991).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ivochkina.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 45, Proceedings of the Sixth International Conference on Differential and Functional Differential Equations and International Workshop “Spatio-Temporal Dynamical Systems” (Moscow, Russia, 14–21 August, 2011). Part 1, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivochkina, N.M. From Gårding’s Cones to p-Convex Hypersurfaces. J Math Sci 201, 634–644 (2014). https://doi.org/10.1007/s10958-014-2016-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-2016-7

Keywords

Navigation