Log in

The Gårding cones in the modern theory of fully nonlinear second order differential equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The modern theory of fully nonlinear second order partial differential equations is based on some algebraic facts and, in particular, on the theory of a-hyperbolic polynomials created by L. Gårding in 1959. The goal of this paper is to describe the Gårding cones in this context. Bibliography: 30 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.C. Evans, “Classical solutions of fully nonlinear convex second order elliptic equations,” Commun. Pure Appl. Math. 25, 333–363 (1982).

    Article  Google Scholar 

  2. N. V. Krylov, “Boundedly nonhomogeneous elliptic and parabolic equations in a domain” [in Russian], Izv. Akad. Nauk SSSR, Ser. Mat. 47, No. 1, 75–108 (1983); English transl.: Math. USSR, Izv. 22, 67–97 (1984).

    Article  Google Scholar 

  3. M. V. Safonov, “Harnack’s inequality for elliptic equations and the Hölder property of their solutions” [in Russian], Zap. Nauchn. Semin. LOMI 96, 272–287 (1980); English transl.: J. Sov. Math. 21, 851-863 (1983).

    Article  MATH  Google Scholar 

  4. M. V. Safonov, “Smoothness near the boundary of the solutions of the elliptic Bellman equations,” [in Russian], Zap. Nauchn. Semin. POMI 147, 150–154 (1985); English transl.: J. Sov. Math. 37, 885-888 (1987).

    Article  MATH  Google Scholar 

  5. N. M. Ivochkina, “On second order differential equations with d-elliptic operators,” [in Russian], Tr. Mat. Inst. Steklova 147, 40–56 (1980); English transl.: Proc. Steklov Inst. Math. 147, 37-54 (1981).

    MATH  Google Scholar 

  6. N. M. Ivochkina, “Integral method of barrier functions and the DIrichlet problem for equations with operators of Monge–Ampère type” [in Russian], Mat. Sb. 112, No. 2, 193–206 (1980); English transl.: Math. USSR Sb. 40, No. 2, 179–192 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  7. N. M. Ivochkina, “A description of the stability cones generated by differential operators of Monge–Ampère type” [in Russian], Mat. Sb. 122, No. 2, 265–275 (1983); English transl.: Math. USSR, Sb. 50, 259-268 (1985).

    Article  MATH  Google Scholar 

  8. N. M. Ivochkina, “Solution of the Dirichlet problem for some equations of Monge–Ampère type” [in Russian], Mat. Sb. 128, No. 3, 403–415 (1985); English transl.: Math. USSR-Sb. 56, No. 2, 403-415 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Caffarelli, L. Nirenberg, and J. Spruck, “The Dirichlet problem for nonlinear second order elliptic equations III. Functions of the eigenvalues of the Hessian,” Acta Math. 155, 261–301 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Gårding, “An inequality for hyperbolic polynomials,” J. Math. Mech. 8, 957–965 (1959).

    MathSciNet  MATH  Google Scholar 

  11. L. Caffarelli, L. Nirenberg, and J. Spruck, “Nonlinear second-order elliptic equations V. The Dirichlet problem for Weingarten hypersurfaces,” Commun. Pure Appl. Math. 41, 47–70 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  12. N. M. Ivochkina, “Solution of the Dirichlet problem for curvature equations of order m” [in Russian], Mat. Sb. 180, No. 7, 867–887 (1989); English transl.: Math. USSR, Sb. 67, No. 2, 317–339 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. M. Ivochkina, “The Dirichlet problem for the equations of curvature of order m” [in Russian], Algebra Anal. 2, No. 3, 192–217 (1990); English transl.: Leningr. Math. J. 2, No. 3, 631–654 (1991).

    MathSciNet  MATH  Google Scholar 

  14. N. S. Trudinger, “The Dirichlet problem for the prescribed curvature equations,” Arch. Ration. Mech. Anal. 111, 153–179 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. M. Ivochkina, Th. Nehring, and F. Tomi, “Evolution of starshaped hypersurfaces by nonhomogeneous curvature functions” [in Russian], Algebra Anal. 12, 185-203 (2000); English transl.: St. Petersburg Math. J. 12, 145-160 (2001).

    MathSciNet  Google Scholar 

  16. N. M. Ivochkina, “Geometric evolution equations preserving convexity,” Am. Math. Soc. Transl. (2) 220 191–121 (2007).

    MathSciNet  Google Scholar 

  17. M. C. Crandall, H. Ishii, and P.L. Lions, “User’s guide to viscosity solutions of second order partial differential equations,” Bull. Am. Math. Soc. 27 1-67 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  18. N. M. Ivochkina, “The Dirichlet principle in the theory of equations of Monge–Ampere type” [in Russian], 4, No. 6. 131–156 (1992); English transl.: St. Petersbg. Math. J. 4, No. 6, 1169-1189 (1993).

    MathSciNet  Google Scholar 

  19. N. S. Trudinger and X.-J. Wang, “Hessian measures II,” Ann. Math. 150 579–604 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  20. N. S. Trudinger, “Week solutions of Hessian equations,” Commun. Partial Different. Equ. 22, 1251–1261 (1997).

    MathSciNet  MATH  Google Scholar 

  21. N. V. Filimonenkova, “On the classical solvability of the Dirichlet problem for nondegenerate m-Hessian equations” [in Russian], Probl. Mat. Anal. 60, 89-110 (2011); English transl.: [ J. Math. Sci. 178, No. 6, 666-694 (2011).

    Article  MathSciNet  Google Scholar 

  22. L. Caffarelli and L. Silvestre, “Smooth approximations to solutions of nonconvex fully nonlinear elliptic equations,” Am. Math. Soc. Transl., Series 2 229 67-85 (2010).

    MathSciNet  Google Scholar 

  23. H. Dong, N. V. Krylov, and X. Li, “On fully nonlinear elliptic and parabolic equations in domains with VMO coefficients” [in Russian], Algebra Anal. 24, No. 1, 53–94 (2012).

    Google Scholar 

  24. M. Lin and N. S. Trudinger, “On some inequalities for elementary symmetric functions,” Bull. Austr. Math. Soc. 50, 317–326 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  25. N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order [in Russian], Nauka, Moscow (1985); English transl.: Reidel, Dordrecht (1987).

    Google Scholar 

  26. N. M. Ivochkina, N. S. Trudinger, and X.-J. Wang, “The Dirichlet problem for degenerate Hessian equations,” Commun. Partial Different. Equ. 29, 219–235 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Gerhardt, “Flow of nonconvex hypersurfaces into spheres,” J. Diff. Geom. 32, 299-314 (1990).

    MathSciNet  MATH  Google Scholar 

  28. J. Urbas, “On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures,” Math. Z. 205, 355-372 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Urbas, “An expansion of convex hypersurfaces,” J. Diff. Geom. 33 91-125 (1991).

    MathSciNet  MATH  Google Scholar 

  30. B. Andrews, “Contraction of convex hypersurfaces in Euclidian space,” Calc. Var. 2, 151-171 (1994).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ivochkina.

Additional information

Translated from Problems in Mathematical Analysis 64, 2012, p. 63–80.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivochkina, N.M., Prokof’eva, S.I. & Yakunina, G.V. The Gårding cones in the modern theory of fully nonlinear second order differential equations. J Math Sci 184, 295–315 (2012). https://doi.org/10.1007/s10958-012-0869-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0869-1

Keywords

Navigation