Log in

Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the fluctuations of the free energy for the 2-spin spherical Sherrington–Kirkpatrick model with no magnetic field. We show that the law of the fluctuations converges to the Gaussian distribution when the temperature is above the critical temperature, and to the GOE Tracy–Widom distribution when the temperature is below the critical temperature. The orders of the fluctuations are markedly different in these two regimes. A universality of the limit law is also proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Lebowitz, J.L., Ruelle, D.: Some rigorous results on the Sherrington–Kirkpatrick spin glass model. Commun. Math. Phys. 112(1), 3–20 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension \(1+1\). Ann. Probab. 42(3), 1212–1256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions. Commun. Pure Appl. Math. 64(4), 466–537 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreanov, A., Barbieri, F., Martina, O.C.: Large deviations in spin-glass ground-state energies. Eur. Phys. J. B 41, 365–375 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. Arous, B., Dembo, G.: Aging of spherical spin glasses. Probab. Theory Relat. Fields 120(1), 1–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Auffinger, A., Chen, W.K.: On properties of Parisi measures. Probab. Theory Relat. Fields 161(3–4), 817–850 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, Z., Silverstein, J.W.: CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab. 32(1A), 553–605 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bai, Z., Wang, X., Zhou, W.: CLT for linear spectral statistics of Wigner matrices. Electron. J. Probab. 14(83), 2391–2417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bai, Z., Wang, X., Zhou, W.: Functional CLT for sample covariance matrices. Bernoulli 16(4), 1086–1113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bai, Z., Yao, J.: On the convergence of the spectral empirical process of Wigner matrices. Bernoulli 11(6), 1059–1092 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bleher, P., Its, A.: Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. Math. 150(1), 185–266 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boettcher, S.: Extremal optimization for Sherrington–Kirkpatrick spin glasses. Eur. Phys. J. B 46, 501–505 (2005)

    Article  ADS  Google Scholar 

  13. Borodin, A., Corwin, I., Ferrari, P.: Free energy fluctuations for directed polymers in random media in \(1+1\) dimension. Commun. Pure Appl. Math. 67(7), 1129–1214 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Borodin, A., Corwin, I., Remenik, D.: Log-gamma polymer free energy fluctuations via a Fredholm determinant identity. Commun. Math. Phys. 324(1), 215–232 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bourgade, P., Erdős, L., Yau, H.T.: Bulk universality of general \(\beta \)-ensembles with non-convex potential. J. Math. Phys. 53(9), 095221 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bourgade, P., Erdös, L., Yau, H.T.: Edge universality of beta ensembles. Commun. Math. Phys. 332(1), 261–353 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Bourgade, P., Erdős, L., Yau, H.T.: Universality of general \(\beta \)-ensembles. Duke Math. J. 163(6), 1127–1190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carmona, P., Hu, Y.: On the partition function of a directed polymer in a Gaussian random environment. Probab. Theory Relat. Fields 124(3), 431–457 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carmona, P., Hu, Y.: Universality in Sherrington–Kirkpatrick’s spin glass model. Ann. Inst. H. Poincaré Probab. Statist. 42(2), 215–222 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Chatterjee, S.: Disorder chaos and multiple valleys in spin glasses. Ar**v:0907.3381

  21. Chatterjee, S.: Superconcentration and Related Topics. Springer Monographs in Mathematics. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  22. Comets, F., Neveu, J.: The Sherrington–Kirkpatrick model of spin glasses and stochastic calculus: the high temperature case. Commun. Math. Phys. 166(3), 549–564 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Comets, F., Shiga, T., Yoshida, N.: Directed polymers in a random environment: path localization and strong disorder. Bernoulli 9(4), 705–723 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Corwin, I., Seppäläinen, T., Shen, H.: The strict-weak lattice polymer. ar**v:1409.1794

  25. Crisanti, A., Sommers, H.J.: The spherical p-spin interaction spin glass model: the statics. Z. Phys. B. Condens. Matter 87(3), 341–354 (1992)

    Article  ADS  Google Scholar 

  26. Deift, P., Gioev, D.: Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices. Commun. Pure Appl. Math. 60(6), 867–910 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Deift, P., Kriecherbauer, T., McLaughlin, K.T.R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52(11), 1335–1425 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Erdős, L., Yau, H.T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229(3), 1435–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fröhlich, J., Zegarliński, B.: Some comments on the Sherrington–Kirkpatrick model of spin glasses. Commun. Math. Phys. 112(4), 553–566 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  30. Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233(1), 1–12 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Guerra, F., Toninelli, F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230(1), 71–79 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Guionnet, A., Maïda, M.: A Fourier view on the \(R\)-transform and related asymptotics of spherical integrals. J. Funct. Anal. 222(2), 435–490 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kosterlitz, J., Thouless, D., Jones, R.: Spherical model of a spin-glass. Phys. Rev. Lett. 36(20), 1217–1220 (1976)

    Article  ADS  Google Scholar 

  35. Kuijlaars, A.B.J., McLaughlin, K.T.R.: Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields. Commun. Pure Appl. Math. 53(6), 736–785 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lytova, A., Pastur, L.: Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37(5), 1778–1840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mo, M.Y.: Rank 1 real Wishart spiked model. Commun. Pure Appl. Math. 65(11), 1528–1638 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Moreno Flores, G.R., Seppäläinen, T., Valkó, B.: Fluctuation exponents for directed polymers in the intermediate disorder regime. Electron. J. Probab. 19(89), 1–28 (2014)

    MathSciNet  MATH  Google Scholar 

  39. O’Connell, N., Ortmann, J.: Tracy-widom asymptotics for a random polymer model with gamma-distributed weights. Ar**v:1408.5326

  40. Panchenko, D.: The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics. Springer, New York (2013)

    MATH  Google Scholar 

  41. Panchenko, D., Talagrand, M.: On the overlap in the multiple spherical SK models. Ann. Probab. 35(6), 2321–2355 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Parisi, G.: A sequence of approximate solutions to the S-K model for spin glasses. J. Phys. A 13(4), L115–L121 (1980)

    Article  ADS  Google Scholar 

  43. Parisi, G., Rizzo, T.: Phase diagram and large deviations in the free energy of mean-field spin glasses. Phys. Rev. B 79, 134205 (2009)

    Article  ADS  Google Scholar 

  44. Pastur, L.: Limiting laws of linear eigenvalue statistics for Hermitian matrix models. J. Math. Phys. 47(10), 103303 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Pastur, L., Shcherbina, M.: Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles. J. Stat. Phys. 86(1–2), 109–147 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Péché, S.: Universality results for the largest eigenvalues of some sample covariance matrix ensembles. Probab. Theory Relat. Fields 143(3–4), 481–516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pillai, N.S., Yin, J.: Universality of covariance matrices. Ann. Appl. Probab. 24(3), 935–1001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Soshnikov, A.: Universality at the edge of the spectrum in Wigner random matrices. Commun. Math. Phys. 207(3), 697–733 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Soshnikov, A.: A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Stat. Phys. 108(5–6), 1033–1056 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. Talagrand, M.: Free energy of the spherical mean field model. Probab. Theory Relat. Fields 134(3), 339–382 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Talagrand, M.: The Parisi formula. Ann. Math. 163(1), 221–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Talagrand, M.: Mean Field Models for Spin Glasses. Volume I. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 54. Springer, Berlin (2011)

  53. Talagrand, M.: Mean Field Models for Spin Glasses. Volume II. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 55. Springer, Heidelberg (2011)

  54. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics up to the edge. Commun. Math. Phys. 298(2), 549–572 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Wang, K.: Random covariance matrices: universality of local statistics of eigenvalues up to the edge. Random Matrices Theory Appl. 1(1), 1150005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Tuca Auffinger, Zhidong Bai, Paul Bourgade, Joe Conlon, Dmitry Panchenko, and Jian-feng Yao for several useful communications. Ji Oon Lee is grateful to the Department of Mathematics, University of Michigan, Ann Arbor, for their kind hospitality during the academic year 2014–2015. The work of **ho Baik was supported in part by NSF Grants DMS1361782. The work of Ji Oon Lee was supported in part by Samsung Science and Technology Foundation Project No. SSTF-BA1402-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Oon Lee.

Appendix

Appendix

In this appendix, we evaluate various constants stated in Sect. 3. As a main tool of the evaluation, we use the Stieltjes transform of the measure \(\nu \), defined by

$$\begin{aligned} m(z) = \int _{C_-}^{C_+} \frac{{\,\mathrm {d}\nu }(x)}{x-z}, \qquad z \in \mathbb {C}\setminus [C_-, C_+). \end{aligned}$$
(8.1)

Note that due to the square-root decay of \(\frac{{\,\mathrm {d}\nu }(x)}{dx}\) at \(x=C_+\), \(m(C_+)\) is well-defined.

1.1 Wigner Matrix

We only consider real Wigner matrices. The complex case can be evaluated in the same way and we skip the details. The limiting spectral measure for real Wigner matrices is \(\frac{{\,\mathrm {d}\nu }(x)}{dx} = \frac{1}{2\pi } \sqrt{4-x^2}\), \(-2\le x\le 2\). Hence

$$\begin{aligned} m(z) = \frac{-z+\sqrt{z^2 -4}}{2}, \end{aligned}$$
(8.2)

and we find that

$$\begin{aligned} \beta _c = \frac{1}{2} \int _{C_-}^{C_+} \frac{{\,\mathrm {d}\nu }(x)}{C_+-x} = -\frac{1}{2} m(2)= \frac{1}{2}. \end{aligned}$$
(8.3)

We now evaluate \({\widehat{\gamma }}\) defined in (2.14). This equation is equivalent to the equation \(-m_{\nu }({\widehat{\gamma }}) = 2\beta \). Solving this equation, we find that

$$\begin{aligned} {\widehat{\gamma }} = 2\beta + \frac{1}{2\beta }. \end{aligned}$$
(8.4)

To evaluate (2.15) and (2.16), we note that

$$\begin{aligned} \int _{-2}^2 \log (z-x) {\,\mathrm {d}\nu }(x) = \frac{1}{4} z \left( z - \sqrt{z^2 -4} \right) + \log \left( z + \sqrt{z^2 -4} \right) -\log 2 - \frac{1}{2}. \end{aligned}$$
(8.5)

for \(z\in \mathbb {C}\setminus (-\infty , 2]\). This follows by noting that

$$\begin{aligned} -m(z)= \frac{\,\mathrm {d}}{\,\mathrm {d}z} \left[ \frac{1}{4} z \left( z - \sqrt{z^2 -4} \right) + \log \left( z + \sqrt{z^2 -4} \right) \right] \end{aligned}$$
(8.6)

and \(\int _{-2}^2 \log (z-x) {\,\mathrm {d}\nu }(x)= \log z + O(z^{-1})\) as \(z \rightarrow \infty \). Thus, using (8.4), we obtain

$$\begin{aligned} F(\beta )= {\left\{ \begin{array}{ll} \beta ^2 &{} \quad \text { if } \beta < 1/2 \\ 2\beta - \frac{\log (2\beta ) + 3/2}{2} &{} \quad \text { if } \beta > 1/2. \end{array}\right. } \end{aligned}$$
(8.7)

We now evaluate \(\ell (\beta )\) and \(\sigma ^2(\beta )\) for the case when \(\beta <\beta _c\). First, since

$$\begin{aligned} \int _{C_-}^{C_+} \frac{{\,\mathrm {d}\nu }(x)}{(z-x)^2} = m^{\prime }(z) = -\frac{1}{2} + \frac{z}{2\sqrt{z^2-4}}, \qquad z\in \mathbb {C}\setminus [-2,2], \end{aligned}$$
(8.8)

 (2.18) becomes

$$\begin{aligned} \ell _1(\beta ) =\log (2\beta ) - \frac{1}{2} \log \left( m^{\prime }({\widehat{\gamma }}(\beta )) \right) =\frac{1}{2} \log (1-4\beta ^2). \end{aligned}$$
(8.9)

Second, we evaluate (see 3.3) \(\tau _\ell (\varphi )= t_\ell ({\widehat{\gamma }}(\beta ))\) for \(\ell =0,1,2,\) and 4, where

$$\begin{aligned} t_\ell (z)= \frac{1}{\pi } \int _{-2}^2 \log (z-x) \frac{T_\ell (x/2)}{\sqrt{4-x^2}} {\,\mathrm {d}x}, \qquad z\in \mathbb {C}\setminus (-\infty , 2), \end{aligned}$$
(8.10)

We start by evaluating

$$\begin{aligned} t_\ell ^{\prime }(z)= \frac{1}{\pi } \int _{-2}^2 \frac{T_\ell (x/2)}{(z-x)\sqrt{4-x^2}} {\,\mathrm {d}x}. \end{aligned}$$
(8.11)

Recall the recursions \(T_{\ell +2}(y)=2yT_{\ell +1}(y)-T_{\ell }(y)\), \(\ell \ge 0\), and the orthogonality relation \(\int _{-1}^1 \frac{y^kT_\ell (y)}{\sqrt{1-y^2}} {\,\mathrm {d}y}=0\) for all integers \(0\le k<\ell \), for the Chebyshev polynomials. From this we obtain the recursions

$$\begin{aligned} t_{\ell +2}^{\prime }(z)= z t_{\ell +1}^{\prime }(z)-t_{\ell }^{\prime }(z) \end{aligned}$$
(8.12)

for \(\ell \ge 0\). Since \(T_0(x/2)=1\) and \(T_1(x/2)=x/2\), it is easy to check from residue calculus that

$$\begin{aligned} t_{0}^{\prime }(z) = \frac{1}{\sqrt{z^2-4}} , \qquad t_{1}^{\prime }(z) = \frac{z}{2\sqrt{z^2-4}} -\frac{1}{2}. \end{aligned}$$
(8.13)

Hence

$$\begin{aligned} t_{2}^{\prime }(z)= \frac{z^2-2}{2\sqrt{z^2-4}} -\frac{z}{2}, \qquad t_4^{\prime }(z)= \frac{z^4-4z^2+2}{2\sqrt{z^2-4}} -\frac{z^3}{2}+z. \end{aligned}$$
(8.14)

Taking the anti-derivatives and noting from (8.10) that \(\tau _0(z)=\log z+ O(1/z)\) and \(t_\ell (z)= O(1/z)\), \(\ell \ge 1\), as \(z\rightarrow \infty \) using the orthogonality relations of the Chebyshev polynomials, we find that

$$\begin{aligned} t_{0}(z)= \log \left( z+ \sqrt{z^2-4} \right) -\log 2, \qquad t_1(z)= \frac{1}{2} \sqrt{z^2-4}-\frac{z}{2}, \end{aligned}$$
(8.15)

and

$$\begin{aligned} t_2(z)= \frac{z}{4} \sqrt{z^2-4}-\frac{z^2}{4} + \frac{1}{2}, \qquad t_4(z)= \frac{1}{8} (z^3-2z)\sqrt{z^2-4}-\frac{z^4}{8} + \frac{z^2}{2} - \frac{1}{4}.\qquad \end{aligned}$$
(8.16)

Hence,

$$\begin{aligned} \tau _{0}(\varphi )= -\log (2\beta ), \quad \tau _{1}(\varphi )= -2\beta , \quad \tau _{2}(\varphi )= -2\beta ^2, \quad \tau _{4}(\varphi )= -4\beta ^4. \end{aligned}$$
(8.17)

Third, \(V_{\textit{GOE}}(\varphi )\) (see (3.7)) is evaluated from lemma 8.1 below. Hence we find that

$$\begin{aligned} V_{\textit{GOE}}(\varphi )= \frac{1}{2\pi ^2} L({\widehat{\gamma }}(\beta ), {\widehat{\gamma }}(\beta )) = -2 \log (1-4\beta ^2) \end{aligned}$$
(8.18)

where F(zw) is defined in (8.20). We also have (see (3.6))

$$\begin{aligned} M_{\textit{GOE}}(\varphi )= \frac{1}{2} \log (1-4\beta ^2). \end{aligned}$$
(8.19)

Therefore, combining with (8.9), (8.17), we obtain (3.12) and (3.13).

It remains to prove following Lemma.

Lemma 8.1

Set

$$\begin{aligned} L(z,w)= & {} \int _{-2}^2\int _{-2}^2 \big ( \log (z-x)\log (z-y)\big )\big ( \log (w-x)\nonumber \\&-\log (w-y)\big )Q(x,y) {\,\mathrm {d}x} {\,\mathrm {d}y}, \end{aligned}$$
(8.20)

for \(z,w\in \mathbb {C}\setminus (-\infty , 2]\), where

$$\begin{aligned} Q(x,y)= \frac{4-xy}{(x-y)^2\sqrt{4-x^2}\sqrt{4-y^2}}. \end{aligned}$$
(8.21)

Then

$$\begin{aligned} L(z,w)=2\pi ^2 \log \left[ \frac{(z+R(z))(w+R(w))}{2(zw-4+R(z)R(w))} \right] , \qquad R(z)=\sqrt{z^2-4}, \end{aligned}$$
(8.22)

for \(z,w\in \mathbb {C}\setminus (-\infty , 2]\), where R(z) is defined with branch cut \([-2,2]\).

Proof of Lemma 8.1

Consider the second derivative

$$\begin{aligned} L_{zw}(z,w)= & {} \int _{-2}^2 \left[ \int _{-2}^2\left( \frac{1}{z-x}-\frac{1}{z-y}\right) \left( \frac{1}{w-x}-\frac{1}{w-y}\right) \right. \nonumber \\&\times \left. \frac{4-xy}{(x-y)^2\sqrt{4-x^2}\sqrt{4-y^2}} {\,\mathrm {d}y} \right] {\,\mathrm {d}x} . \end{aligned}$$
(8.23)

Recall that \(R(x)=\sqrt{x^2-4}\) is defined with the branch cut \([-2,2]\). Using this, it is easy to check that

$$\begin{aligned} L_{zw}(z,w)=-\frac{1}{4} \int _{\Sigma } \left[ \int _{\Sigma ^{\prime }} \left( \frac{1}{z-x}-\frac{1}{z-y}\right) \left( \frac{1}{w-x}-\frac{1}{w-y}\right) \frac{4-xy}{(x-y)^2R(x)R(y)} {\,\mathrm {d}y} \right] {\,\mathrm {d}x}\nonumber \\ \end{aligned}$$
(8.24)

where \(\Sigma \) and \(\Sigma ^{\prime }\) are simple closed contours, oriented positively, that contain the interval \([-2,2]\) in its interior and the points z and w in its exterior, and \(\Sigma ^{\prime }\) lies in the interior of \(\Sigma \). By residue calculus, we obtain

$$\begin{aligned} L_{zw}(z,w)=\frac{-2\pi ^2}{(z-w)^2} \left( 1+ \frac{4-zw}{R(z)R(w)} \right) . \end{aligned}$$
(8.25)

Integrating with respect to z,

$$\begin{aligned} L_{w}(z,w)=\frac{-2\pi \big ( R(z)-R(w)\big )}{(z-w)R(w)} +C_1(w) \end{aligned}$$
(8.26)

for some function \(C_1(w)\) of w. The function \(C_1(w)\) is determined by noting that, from (8.26),

$$\begin{aligned} L_{w}(z,w)=\frac{-2\pi }{R(w)} +C_1(w) + O(z^{-1}) \end{aligned}$$
(8.27)

as \(z\rightarrow \infty \) with fixed w, while from (8.20)

$$\begin{aligned} L_{w}(z,w)= & {} L(z,w)\nonumber \\= & {} \int _{-2}^2\int _{-2}^2 \left( \log (z-x)-\log (z-y)\right) \left( \frac{1}{w-x}-\frac{1}{w-y}\right) Q(x,y) {\,\mathrm {d}x} {\,\mathrm {d}y},\nonumber \\ \end{aligned}$$
(8.28)

is \(O(z^{-1})\). Hence \(C_1(w)= \frac{2\pi ^2}{R(w)}\). Integrating with respect to w, we find that

$$\begin{aligned} L(z,w)=2\pi ^2 \log \left[ \frac{(w+R(w))}{2(zw-4+R(z)R(w))} \right] +C_2(z) \end{aligned}$$
(8.29)

for some function \(C_2(z)\) of z. By considering the asymptotics as \(w\rightarrow \infty \), we find that \(C_2(z)=2\pi ^2 \log (z+R(z))\), and this completes the proof of Lemma. \(\square \)

1.2 Sample Covariance Matrix

We again only consider the real case here. The complex case is similar. The Stieltjes transform of the Marchenko-Pastur distribution \({\,\mathrm {d}\nu }\) in  (3.26) is given by

$$\begin{aligned} m_{\nu }(z) = \frac{-z+\sqrt{C_+C_-}+\sqrt{(z-C_+)(z-C_-)}}{2z}, \qquad z\in \mathbb {C}\setminus [C_-, C_+]. \end{aligned}$$
(8.30)

Here \(C_+=(\sqrt{d}+1)^2\) and \(C_-=(\sqrt{d}-1)^2\). Hence, for real sample covariance matrices, we have

$$\begin{aligned} \beta _c = \frac{1}{2} \int _{C_-}^{C_+} \frac{{\,\mathrm {d}\nu }(x)}{C_+ -x} = -\frac{m_{\nu }(C_+)}{2} = \frac{1}{2 (\sqrt{d} +1)}. \end{aligned}$$
(8.31)

In the high temperature case, \(\beta < \beta _c\), we get from the definition of \({\widehat{\gamma }}\) that

$$\begin{aligned} -m_{\nu }({\widehat{\gamma }}) = 2\beta . \end{aligned}$$
(8.32)

Solving the equation, we find that

$$\begin{aligned} {\widehat{\gamma }} = \frac{d}{1-2\beta }+ \frac{1}{2\beta }. \end{aligned}$$
(8.33)

We note that \({\widehat{\gamma }}\) is a decreasing function in \(\beta \) and satisfies \({\widehat{\gamma }}>C+\) for \(0<\beta < \beta _c\). In order to evaluate \(L(\beta )\) in (2.15), note that

$$\begin{aligned} \frac{\,\mathrm {d}}{\,\mathrm {d}\beta } \int _{-2}^2 \log ({\widehat{\gamma }}-\lambda ) {\,\mathrm {d}\nu }(\lambda )= & {} \left( \frac{\,\mathrm {d}{\widehat{\gamma }}}{\,\mathrm {d}\beta } \right) \frac{\,\mathrm {d}}{\,\mathrm {d}{\widehat{\gamma }}} \int _{-2}^2 \log ({\widehat{\gamma }}-\lambda ) {\,\mathrm {d}\nu }(\lambda ) \nonumber \\= & {} -m_{\nu }({\widehat{\gamma }}) \left( \frac{\,\mathrm {d}{\widehat{\gamma }}}{\,\mathrm {d}\beta } \right) = 2\beta \left( \frac{2d}{(1-2\beta )^2} - \frac{1}{2\beta ^2} \right) \end{aligned}$$
(8.34)

using (8.32) and (8.33). Hence, by taking the anti-derivative,

$$\begin{aligned} \int _{-2}^2 \log ({\widehat{\gamma }}(\beta )-\lambda ) {\,\mathrm {d}\nu }(\lambda )= & {} \frac{2\beta }{1-2\beta }d + d \log (1-2\beta ) - \log (2\beta ), \end{aligned}$$
(8.35)

where the constant of integration is determined by the asymptotics that the left hand side behaves as

$$\begin{aligned} \log {\widehat{\gamma }} + O({\widehat{\gamma }}^{-1}) = -\log (2\beta ) + O(\beta ) \end{aligned}$$

as \({\widehat{\gamma }} \rightarrow \infty \), or \(\beta \rightarrow 0\). Hence

$$\begin{aligned} L(\beta )= - \frac{d}{2\beta } \log (1-2\beta ) \end{aligned}$$

for \(\beta <\beta _c\).

The limit of the free energy per particle \(L(\beta )\) for \(\beta >\beta _c\) is obtained easily using (8.35) and noting that \(C_+={\widehat{\gamma }}(\beta _c)\).

We now evaluate \(\ell \) and \(\sigma ^2\) for \(\beta <\beta _c\). From (2.18), we find that

$$\begin{aligned} \ell _1 = \log (2\beta ) - \frac{1}{2} \log (m^{\prime }_{\nu }({\widehat{\gamma }})) = \frac{1}{2} \log (1-4B^2) \end{aligned}$$
(8.36)

where we set

$$\begin{aligned} B= \frac{\beta \sqrt{d}}{1-2\beta }. \end{aligned}$$
(8.37)

On the other hand, in order to evaluate \(M(\varphi )\) and \(V(\varphi )\) for \(\varphi (x)= \log ({\widehat{\gamma }} -x)\), we observe that (3.27) implies that

$$\begin{aligned} \Phi (x)= \log (\sqrt{d}) +\psi (x), \qquad \psi (x)= \log \left( 2B+\frac{1}{2B}-x \right) \end{aligned}$$
(8.38)

where B is given above. Note that \(\psi (x)\) is the same function as \(\varphi (x)=\log ({\widehat{\gamma }} -x)\) for Wigner matrices with the change that \(\beta \) is replaced by B. Moreover, we have \(\tau _\ell (c+f)=\tau _{\ell }(f)\) for \(\ell >0\) and \(\tau _0(c+f)=c+\tau _0(f)\) for a constant c and function f, from the definition of \(\tau _\ell \) and the orthogonality of Chebyshev polynomials. From this and the results obtained for Wigner matrices, we can easily find \(M(\varphi )\) and \(V(\varphi )\) for sample covariance matrices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baik, J., Lee, J.O. Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model . J Stat Phys 165, 185–224 (2016). https://doi.org/10.1007/s10955-016-1610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1610-0

Keywords

Navigation