Log in

Effect of Solvents and pH on β-Cyclodextrin Inclusion Complexation of 2,4-Dihydroxyazobenzene and 4-Hydroxyazobenzene

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The spectral characteristics of 2,4-dihydroxyazobenzene (DHAB, sudan orange G) and 4-hydroxyazobenzene (HAB) have been studied in various solvents, different hydrogen ion and β-cyclodextrin (β-CD) concentrations, and are compared with azobenzene (AB). The inclusion complexes of the above molecules with β-CD were analyzed by UV-vis spectrometry, flourometry, FT-IR, 1H NMR, SEM and DFT methods. The solvent study shows that only the azo form is present in DHAB and HAB molecules. The unusually large red shift observed in acidic solutions indicates both molecules exhibit azo-hydrazo tautomerization. In the β-CD solutions, the increase in fluorescence intensity and large bathochromic shift in the S1 state indicates that DHAB and HAB form 2:2 inclusion complexes, whereas AB forms a 1:1 inclusion complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonov, L., Kamada, K., Nedeltcheva, D., Ohta, K., Kamounah, F.S.: Gradual change of one- and two-photon absorption properties in solution—protonation of 4-N,N-dimethylamino-4′-aminoazobenzene. J. Photochem. Photobiol. A, Chem. 181, 274–282 (2006)

    Article  CAS  Google Scholar 

  2. Formosinho, S.J., Arnaut, L.G.: Excited-state proton transfer reactions. I. Fundamentals and intermolecular reactions. J. Photochem. Photobiol. A, Chem. 75, 1–21 (1993)

    Article  Google Scholar 

  3. Formosinho, S.J., Arnaut, L.G.: Excited-state proton transfer reactions. II. Intramolecular reactions. J. Photochem. Photobiol. A, Chem. 75, 22–48 (1993)

    Google Scholar 

  4. O’Connor, D.B., Scott, G.W., Coulter, D.R., Yavrouln, A.: Temperature dependence of electronic energy transfer and quenching in copolymer films of styrene and 2-(2′-hydroxy-5′-vinylphenyl)-2H-benzotriazole. J. Phys. Chem. 95, 10252–10261 (1991)

    Article  Google Scholar 

  5. Chou, P.T., Martinej, M.L.: Photooxygenation of 3-hydroxyflavone and molecular design of the radiation-hard scintillator based on the excited-state proton transfer. Radiat. Phys. Chem. 41, 373–378 (1993)

    Article  CAS  Google Scholar 

  6. Nishiya, T., Ymauchi, S., Hirota, N., Baba, M., Hamazaki, I.: Fluorescence studies of intramolecularly hydrogen-bonded o-hydroxyacetophenone, salicylamide, and related molecules. J. Phys. Chem. 90, 5730–5735 (1986)

    Article  CAS  Google Scholar 

  7. Das, S.K., Dogra, S.K.: Excited state intramolecular proton transfer of 2-(2′-hydroxyphenyl)benzimidazole in non-ionic micelles. J. Chem. Soc. Faraday Trans. I 94, 139–145 (1998)

    CAS  Google Scholar 

  8. Szejtli, J., Osa, T.: In: Atwood, J.L., Davies, J.E., Mac Nicol, D.D., Vogtle, F. (eds.) Comprehensive Supramolecular Chemistry, vol. 3. Pergamon/Elsevier, Oxford (1996)

    Google Scholar 

  9. Meo, P.L., D’Anna, F., Riela, S., Gruttadauria, M., Noto, R.R.: Spectrophotometric study on the thermodynamics of binding of α- and β-cyclodextrin towards some p-nitrobenzene derivatives. Org. Biomol. Chem. 1, 1584–1590 (2003)

    Article  Google Scholar 

  10. Takei, M., Yui, H., Hirose, Y., Sawada, T.: Femtosecond time-resolved spectroscopy of photoisomerization of methyl orange in cyclodextrins. J. Phys. Chem. A 105, 11395–11399 (2001)

    Article  CAS  Google Scholar 

  11. Bortolus, P., Monti, S.: Cis-trans photoisomerization of azobenzene-cyclodextrin inclusion complexes. J. Phys. Chem. 91, 5046–5050 (1987)

    Article  CAS  Google Scholar 

  12. Yoshida, N., Yamauchi, H., Higashi, M.: Dynamic aspects in host–guest interactions. Kinetics of the metal complexation reactions of 2-(5-bromo-2-pyridylazo)-5-(n-propyl-n-sulfopropylamino) phenol associated with cyclodextrin inclusion reactions. J. Phys. Chem. 102, 1523–1529 (1998)

    CAS  Google Scholar 

  13. Sanchez, A.M., de Rossi, R.H.: Effect of β-cyclodextrin on the thermal cis–trans isomerization of azobenzenes. J. Org. Chem. 61, 3446–3451 (1996)

    Article  CAS  Google Scholar 

  14. Abou-Hamdan, A., Bugnon, P., Saudan, C., Lye, P.G., Merbach, A.E.: High-pressure studies as a novel approach in determining inclusion mechanisms: thermodynamics and kinetics of the host–guest interactions for α-cyclodextrin complexes. J. Am. Chem. Soc. 122, 592–602 (2000)

    Article  CAS  Google Scholar 

  15. Ueno, A., Kuwabara, T., Nakamura, A., Toda, F.: A modified cyclodextrin as a guest responsive colour-change indicator. Nature 356, 136–137 (1992)

    Article  CAS  Google Scholar 

  16. Kuwabara, T., Aoyagi, T., Takamura, M., Matsushita, A., Nakamura, A., Ueno, A.: Heterodimerization of dye-modified cyclodextrins with native cyclodextrins. J. Org. Chem. 67, 720–725 (2002)

    Article  CAS  Google Scholar 

  17. Jorgenson, M.J., Horter, D.R.: A Critical re-evaluation of the Hammett acidity function at moderate and high acid concentrations of sulfuric acid. New H 0 values based solely on a set of primary aniline indicators. J. Am. Chem. Soc. 85, 878–887 (1963)

    Article  CAS  Google Scholar 

  18. Yagil, G.: The effect of ionic hydration on rate and equilibrium in concentrated electrolyte solutions. IV. The effect of neutral electrolytes on the indicator acidity of an alkaline solution. J. Phys. Chem. 71, 1045–1052 (1967)

    Article  CAS  Google Scholar 

  19. Stalin, T., Rajendiran, N.: Intra molecular charge transfer effects on 3-aminobenzoic acid. Chem. Phys. 322, 311–322 (2006)

    Article  CAS  Google Scholar 

  20. Stalin, T., Rajendiran, N.: Intramolecular charge transfer effect associated with hydrogen bonding on 2-aminobenzoic acid. J. Photochem. Photobiol. A, Chem. 182, 137–150 (2006)

    Article  CAS  Google Scholar 

  21. Stalin, T., Rajendiran, N.: Solvatochromism prototropism and complexation of para-aminobenzoic acid. J. Incl. Phenom. Macrocycl. Chem. 55, 21–29 (2006)

    Article  CAS  Google Scholar 

  22. Prabhu, A.A.M., Rajendiran, N.: Unusual spectral shifts on fast violet-B and benzanilide: effect of solvents, pH and β-cyclodextin. Spectrochim. Acta 74, 484–497 (2009)

    Article  Google Scholar 

  23. Stalin, T., Rajendiran, N.: Photophysical behavior of 4-hydroxy-3,5-dimethoxybenzoic acid in different solvents pH and β-cyclodextrin. J. Photochem. Photobiol. A, Chem. 177, 144–155 (2006)

    Article  CAS  Google Scholar 

  24. Stalin, T., Rajendiran, N.: Photophysical properties of 4-hydroxy-3-methoxy benzoic acid. J. Mol. Struct. 794, 35–45 (2006)

    Article  CAS  Google Scholar 

  25. Prabhu, A.A.M., Rajendiran, N.: Intra molecular proton transfer effects on 2,6-diaminopyridine. J. Fluoresc. 20, 43–54 (2010)

    Article  CAS  Google Scholar 

  26. Prabhu, A.A.M., Rajendiran, N.: Azo-ammonium tautomerism and assembly behavior of inclusion complexes of β-cyclodextrin with 4-amino, 2′,3-dimethylazobenzene and 4-amino azobenzene. Ind. J. Chem. A 49, 407–417 (2010)

    Google Scholar 

  27. Joshi, H., Kamounah, F.S., van der Zwan, G., Gooijer, C., Antonov, L.: Temperature dependent absorption spectroscopy of some tautomeric azo dyes and Schiff bases. J. Chem. Soc., Perkin Trans. 2, 2303–2308 (2001)

    Google Scholar 

  28. Antonov, L., Fabian, W.M.F., Nedeltcheva, D., Kamounah, F.S.: Tautomerism of 2-hydroxynaphthaldehyde Schiff bases. J. Chem. Soc., Perkin Trans. 2, 1173–1179 (2000)

    Google Scholar 

  29. Smoluch, M., Joshi, H., Gerssen, A., Gooijer, C., van der Zwan, G.: Fast excited-state intramolecular proton transfer and subnanosecond dynamic Stokes shift of time-resolved fluorescence spectra of the 5-methoxysalicylic acid/diethyl ether complex. J. Phys. Chem. 109, 535–541 (2005)

    CAS  Google Scholar 

  30. Alarcón, S.H., Olivieri, A.C., Labadie, G.R., Cravero, R.M., Gonzales-Sierra, M.: Tautomerism of representative aromatic—hydroxy carbaldehyde anils as studied by spectroscopic methods and AM1 calculations. Synthesis of 10-hydroxyphenanthrene-9-carbaldehyde. Tetrahedron 51, 4619–4626 (1995)

    Article  Google Scholar 

  31. Bilot, L., Kawasaki, A.: Zur Theory des Einflusses von Lösungsmitteln auf die Elektronenspektren der Molekuele. Z. Naturforsch. A 17, 621–630 (1962)

    Google Scholar 

  32. Reichardt, C.: Empirical parameters of solvent polarity as linear free-energy relationships. Angew. Chem., Int. Ed. Engl. 18, 98–110 (1979)

    Article  Google Scholar 

  33. Yeh, S.J., Jaffe, H.H.: An acidity function for the solvent system consisting of 20 vol% ethanol and 80 vol% sulfuric acid–water mixtures. J. Am. Chem. Soc. 81, 3274–3278 (1959)

    Article  CAS  Google Scholar 

  34. Klotz, I.M., Fiess, H.A., Chen Ho, Y.Y., Mellody, M.: The position of the proton in substituted azobenzene molecules. J. Am. Chem. Soc. 76, 5136–5140 (1954)

    Article  CAS  Google Scholar 

  35. Strachan, W.M.J., Dolenko, A., Buncel, E.: Diprotonation equilibria involving 4-hydroxyazobenzene and 4-hydroxyazobenzene-4′-sulfonic acid. Can. J. Chem. 47, 3631–3636 (1969)

    Article  CAS  Google Scholar 

  36. Paul, M.A., Long, F.A.: H0 and related indicator acidity function. Chem. Rev. 57, 1–45 (1957)

    Article  CAS  Google Scholar 

  37. Arnett, E.M., Wu, C.Y.: Stereoelectronic effects on organic bases. II. Base strengths of the phenolic ethers. J. Am. Chem. Soc. 82, 5660–5665 (1960)

    Article  CAS  Google Scholar 

  38. Reeves, R.L.: The protonation and indicator behavior of some ionic azobenzenes in aqueous sulfuric acid. J. Am. Chem. Soc. 88, 2240–2247 (1969)

    Article  Google Scholar 

  39. Sawcki, E.: Physical properties of the aminoazobenzene dyes. IV. The position of proton addition. J. Org. Chem. 22, 365–367 (1957)

    Article  Google Scholar 

  40. Maclean, C., Mackor, E.L.: NMR study of proton exchange of weak bases in hydrogen fluoride. Discuss. Faraday Soc. 34, 165–176 (1962)

    Article  Google Scholar 

  41. Birchall, T., Gillespie, R.J.: Nuclear magnetic resonance studies of the protonation of weak bases in fluorosulphuric acid. III. Methylbenzenes and anisole. Can. J. Chem. 42, 502–513 (1964)

    Article  CAS  Google Scholar 

  42. Birchalla, T., Bournsr, N., Gillespie, J., Smith, P.J.: Nuclear magnetic resonance studies of the protonation of weak bases in fluorosulphuric acid. IV. Phenols and aromatic ethers. Can. J. Chem. 42, 1433–1439 (1964)

    Article  Google Scholar 

  43. Yates, K., Wai, H.: The ionization of some typical weak bases in concentrated perchloric acid. Can. J. Chem. 43, 2131–2133 (1965)

    Article  CAS  Google Scholar 

  44. Gold, V., Tye, F.L.: Ultra-violet absorption spectra of conjugated hydrocarbon in sulphuric acid solution. J. Chem. Soc. 01, 2172–2180 (1952)

    Article  Google Scholar 

  45. Agbaria, R.A., Uzan, B., Gill, D.: Fluorescence of 1,6-naphthalenediol with cyclodextrins. J. Phys. Chem. 93, 3855–3859 (2010)

    Article  Google Scholar 

  46. Park, H.R., Mayer, B., Wolschann, P., Kohler, G.: Excited-state proton transfer of 2-naphthol inclusion complexes with cyclodextrins. J. Phys. Chem. 98, 6158–6166 (1994)

    Article  CAS  Google Scholar 

  47. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  48. Rekhasky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998)

    Article  Google Scholar 

  49. Liu, Y., Zhao, Y-L., Chen, Y., Guo, D.S.: Assembly behavior of inclusion complexes of β-cyclodextrin with 4-hydroxyazobenzene and 4-aminoazobenzene. Org. Biomol. Chem. 3, 584–591 (2005)

    Article  CAS  Google Scholar 

  50. Schneider, H.J., Hacket, F., Rudiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1786 (1998)

    Article  CAS  Google Scholar 

  51. Schuette, J.M., Ndou, T., Munozde le pina, A., Greene, K.L., Werner, I.M.: Characterization of the β-cyclodextrin/acridine complex. J. Phys. Chem. 95, 4897–4902 (1991)

    Article  CAS  Google Scholar 

  52. Smith, V.K., Nodu, T.T., Werner, I.M.: Spectroscopic study of the interaction of catechin with α-, β-, and γ-cyclodextrins. J. Phys. Chem. 98, 8627–8631 (1994)

    Article  CAS  Google Scholar 

  53. CAChe reference, version 7.5, Fujitsu Limited CAChe Oxford Molecular Ltd. (2002); CAChe Guide to MOPAC, version 7.5, Fujitsu Limited CAChe Oxford Molecular Ltd. (2002)

  54. Das, S.K.: Inclusion complexation of 2-(4′-N,N-dimethylaminophynyl)-1H-naphth[2,3-d]imidazole by β-cyclodextrin: effect on the TICT emission. Chem. Phys. Lett. 361, 21–28 (2002)

    Article  CAS  Google Scholar 

  55. Balamurali, M.M., Dogra, S.K.: Intra and intermolecular proton transfer in methyl-2-hydroxy nicotinate. J. Lumin. 110, 147–163 (2004)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rajendiran.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10953_2010_9639_MOESM1_ESM.doc

Supplementary Photographs for: Experimental and theoretical thermodynamic studies of the adsorption of polyhalogenated organic compounds from aqueous solution by chemically modified multi-walled carbon nanotubes. (DOC 8.44MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Premakumari, J., Roy, G.A.G., Prabhu, A.A.M. et al. Effect of Solvents and pH on β-Cyclodextrin Inclusion Complexation of 2,4-Dihydroxyazobenzene and 4-Hydroxyazobenzene. J Solution Chem 40, 327–347 (2011). https://doi.org/10.1007/s10953-010-9639-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9639-1

Keywords

Navigation