Log in

Pattern recognition of major asperities using local recurrence time in Alborz Mountains, Northern Iran

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

In this study, seismic data recorded during the period 01/01/1996 to 09/01/2009 has been used to evaluate the seismic hazard potential along the Alborz region, Northern Iran. The technique of map** local recurrence time, T L, is used to map major asperities, which are considered as the areas with maximum hazard. We calculated T L from a and b values which are in turn derived from the frequency–magnitude relation constants within a radius of 30 km about every corner point of a 10-km spacing grid. Since b value is inversely related to applied stress, the areas with lowest b values and/or shortest T L are interpreted to locate the asperities or the areas of maximum seismic hazard. To test this method, we computed T L map using seismic catalogues before and after the 2004 Baladeh earthquake of M w 6.2. The local recurrence time map before the earthquake shows anomalously short T L in the epicentral region of the Baladeh earthquake a decade before its occurrence. The T L map after the earthquake indicates that this large event has redistributed the applied stress in the Alborz region. The microseismicity of the region after the Baladeh earthquake, however, suggests that there are two anomalies in T L map positioned in Alborz. The places where these anomalies are observed can be considered as the areas with maximum seismic hazard for future large earthquake in the Alborz region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki K (1965) Maximum likelihood estimate of b in the formula log N = a − b M and its confidence limits. Bull Earthq Res Inst 43:237–239

    Google Scholar 

  • Aki K (1984) Asperities, barriers, characteristic earthquakes and strong motion prediction. J Geophys Res 89:5867–5872

    Article  Google Scholar 

  • Allen MB, Ghassemi MR, Shahrabi M, Qorashi M (2003) Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. J Struct Geol 25:659–672

    Article  Google Scholar 

  • Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge University Press, Cambridge, 219 pp

    Google Scholar 

  • Amelung F, King G (1997) Earthquake scaling laws for cree** and non-cree** faults. Geophys Res Lett 24:507–510

    Article  Google Scholar 

  • Ashtari M, Hatzfeld D, Kamalian N (2005) Microseismicity in the region of Tehran. Tectonophysics 395:193–208

    Article  Google Scholar 

  • Bachmanov DM, Trifonov VG, Hessami Kh, Kozhurin AI, Ivanova TP, Rogozhin EA, Hademi MC, Jamali FH (2004) Active faults in the Zagros and central Iran. Tectonophysics 380:221–241

    Article  Google Scholar 

  • Bender B (1983) Maximum likelihood estimation of b-values for magnitude grouped data. Bull Seismol Soc Am 73:831–851

    Google Scholar 

  • Berberian M, Qorashi M, Arzhang-Ravesh B, Mohajer-Ashjai A (1985) Recent tectonics, seismotectonics and earthquake-fault hazard study of the Greater Tehran area. Contribution to the Seismotectonics of Iran, Part V, Geol. Surv. Iran, 56, 316 pp (in Persian)

    Google Scholar 

  • Berberian M, Qorashi M, Jackson JA, Priestley K, Wallace T (1992) The Rudbar-Tarom earthquake of 20 June 1990 in NW Persia: preliminary field and seismological observations, and its tectonic significance. Bull Seismol Soc Am 82:1726–1755

    Google Scholar 

  • Ebel JE, Kafka AL (1999) A Monte Carlo approach to seismic hazard analysis. Bull Seismol Soc Am 89:854–866

    Google Scholar 

  • Engdahl ER, Jackson JA, Myers SC, Bergman EA, Priestley K (2006) Relocation and assessment of seismicity in the Iran region. Geophys J Int 167:761–778

    Article  Google Scholar 

  • Frohlich C, Davis S (1993) Teleseismic b-values: or much ado about 1.0. J Geophys Res 98:631–644

    Article  Google Scholar 

  • Ghods A, Sobouti F (2005) Quality assessment of seismic recording: Tehran seismic telemetry network. Asian J Earth Sci 25:687–694

    Article  Google Scholar 

  • Gorshkov AI, Kuznetsov IV, Panza GF, Soloviev AA (2000) Identification of future earthquake sources in the Carpatho-Balkan orogenic belt using morphostructural criteria. Pure Appl Geophys 157:79–95

    Article  Google Scholar 

  • Gutenberg B, Richter C (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • Han SW, Choi YS (2008) Seismic hazard analysis in low and moderate seismic region-Korean peninsula. Struct Saf 30:543–558

    Article  Google Scholar 

  • Hessami K, Nilforoushan F, Talbot CJ (2006) Active deformation within the Zagros Mountains deduced from GPS measurements. J Geol Soc, Lond 163:143–148

    Article  Google Scholar 

  • Ishimoto M, Iida K (1939) Observations of earthquakes registered with the microseismograph constructed recently. Bull Earthq Res Inst 17:443–478

    Google Scholar 

  • Jackson JA, Priestley K, Allen M, Berberian M (2002) Active tectonics of the South Caspian Basin. Geophys J Int 148:214–245

    Article  Google Scholar 

  • Lay T, Wallace TC (1995) Modem global seismology. Academic, San Diego, p 358

    Google Scholar 

  • Nilforoushan F, Vernant P, Masson F, Vigny C, Martinod J, Abbassi M, Nankali H, Hatzfeld D, Bayer R, Tavakoli F, Ashtiani A, Doerflinger E, Daignières M, Collard P, Chéry J (2003) GPS network monitors the Arabia-Eurasia collision deformation in Iran. J Geodesy 77:411–422

    Article  Google Scholar 

  • Nuttli OW (1973) Seismic wave attenuation relations for eastern North America. J Geophys Res 78:855–876

    Article  Google Scholar 

  • Öncel AO, Wyss M (2000) The major asperities of the 1999 M w = 7.4 Izmit earthquake defined by the microseismicity of the two decades before it. Geophys J Int 143:501–506

    Article  Google Scholar 

  • Purcaru G, Berckhemer H (1982) Quantitative relations of seismic source parameters and classification of earthquakes. Tectonophysics 84:57–128

    Article  Google Scholar 

  • Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res 90(B7):5479–5495

    Article  Google Scholar 

  • Rezapour M (2005) Magnitude scale in the Tabriz seismic network. J Earth Space Phys 31(1):13–21 (in persian)

    Google Scholar 

  • Ritz J-F, Nazari H, Ghassemi A, Salamati R, Shafei A, Soleymani S, Vernant P (2006) Active transtension inside central Alborz: a new insight into northern Iran—southern Caspian geodynamics. Geology 34:477–480

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S (2005) Microseismicity data forecast rupture area. Nature 434:1086. doi:10.1038/4341086a

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2004) Earthquake statistics at Parkfield: 1. Stationarity of b-values. J Geophys Res 109:B12307. doi:10.1029/2004JB003234

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437:539–542. doi:10.1038/nature04094

    Article  Google Scholar 

  • Shi Y, Bolt BA (1982) The standard error of the magnitude–frequency b value. Bull Seismol Soc Am 72:1677–1687

    Google Scholar 

  • Tatar M, Jackson J, Hatzfeld D, Bergman E (2007) The 2004 May 28 Baladeh earthquake (M w 6.2) in the Alborz, Iran: overthrusting the South Caspian Basin margin, partitioning of oblique convergence and seismic hazard of Tehran. Geophys J Int 170:249–261

    Article  Google Scholar 

  • Tchalenko JS (1974) Recent destructive earthquakes in the central Alborz. Geol. Surv. Iran, Report No. 29:97–116

    Google Scholar 

  • Turcotte RL (1997) Fractals and chaos in Geology and Geophysics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Vernant P, Nilforoushan F, Hatzfeld D et al. (2004) Present-day crustal deformation and plate kinematics in Middle East constrained by GPS measurements in Iran and Northern Oman. Geophys J Int 157:381–398

    Article  Google Scholar 

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Letts 72:373–382

    Google Scholar 

  • Wiemer S, Wyss M (1997) Map** the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times. J Geophys Res 102:15115–15128

    Article  Google Scholar 

  • Wiemer S, Wyss M (2002) Map** spatial variability of the frequency–magnitude distribution of earthquakes. Adv Geophys 45:259–302

    Google Scholar 

  • Wyss M, Wiemer S (2000) Change in the probability for earthquakes in southern California due to the Landers magnitude 7.3 earthquake. Science 290:1334–1338

    Article  Google Scholar 

  • Wyss M, Schorlemmer D, Wiemer S (2000) Map** asperities by minima of local recurrence time: the San Jacinto-Elsinore fault zones. J Geophys Res 105:7829–7844

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Motaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motaghi, K., Hessami, K. & Tatar, M. Pattern recognition of major asperities using local recurrence time in Alborz Mountains, Northern Iran. J Seismol 14, 787–802 (2010). https://doi.org/10.1007/s10950-010-9201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-010-9201-z

Keywords

Navigation