Log in

Two-Phase Coexistence and Multiferroic Properties of Cr-Doped BiFeO3 Thin Films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Pure BiFeO 3 (BFO) and Cr-doped BiFe 0.97 Cr 0.03 O 3 (BFCO) thin films were successfully prepared on F-doped SnO 2 conductive film (FTO)/glass (SnO 2: F) substrates by a sol–gel method. The effect of Cr do** on the structure, ferroelectric, and ferromagnetic properties of the BFO and BFCO thin films have been investigated. X-ray diffraction, Rietveld refined X-ray diffraction (XRD) patterns, and Raman spectroscopy results clearly reveal that the BFCO thin film is characterized by the coexistence of two phases (trigonal and tetragonal). Moreover, the various leakage mechanisms of both thin films have also been studied. The improved ferroelectricity with remnant polarization (Pr) of about 2Pr = 68.68 μC/cm 2 under an applied electric field of 1,181.8 kV/cm and enhanced ferromagnetism with saturation magnetization (M s) of M s = 0.93 emu/cm 3 have been observed in the BFCO thin film. The improved electrical properties of the BFCO thin film are ascribed to the coexistence of trigonal and tetragonal phase and high valence of Cr 6+, and the Fe–O 6 octahedron distortion is enhanced due to the overlap and hybridization of Fe 3d/Cr 3d and O 2p orbits by Cr do**.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Catalan, G., Scott, J.F.: Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  2. Singh, V., Sharma, S., Dwivedi, R.K., Kumar, M., Kotnala, R.K., Mehra, N.C., Tandon, R.P.: J. Supercond. Nov. Magn. 26, 657–661 (2013)

    Article  Google Scholar 

  3. Wu, J.G., Qiao, S., Wang, J., **ao, D.Q., Zhu, J.G.: Appl. Phys. Lett. 102, 052904 (2013)

    Article  ADS  Google Scholar 

  4. Yan, F., Zhu, T.J., Lai, M.O., Lu, L.: Appl. Phys. A 101, 651 (2010)

    Article  ADS  Google Scholar 

  5. Li, Y.T., Fan, Y.W., Zhang, H.G., Teng, X.X., Dong, X.G., Liu, H., Ge, X.P., Li, Q., Chen, W., Li, X.A., Ge, Z.Y.: J. Supercond. Nov. Magn. 27, 1239–1243 (2014)

    Article  Google Scholar 

  6. Selvadurai, A.P.B., Pazhanivelu, V., Murugaraj, R.: J. Supercond. Nov. Magn. 27, 839–844 (2014)

    Article  Google Scholar 

  7. Singh, S.K., Kim, Y.K., Funakubo, H., Ishiwara, H.: Appl. Phys. Lett. 88, 162904 (2006)

    Article  ADS  Google Scholar 

  8. Wang, Y., Nan, C.W.: Appl. Phys. Lett. 89, 1–3 (2006)

    Google Scholar 

  9. Ding, N.F., Deng, H.M., Yang, P.X., Chu, J.H.: Mater. Lett. 82, 71–73 (2012)

    Article  Google Scholar 

  10. Tang, X.W., Dai, M., Zhu, X.B., Sun, Y.P.: J. Alloys Compd. 552, 186–189 (2013)

    Article  Google Scholar 

  11. Huang, J.Z., Shen, Y., Li, M., Nan, C.W.: J. Appl. Phys. 110, 094106 (2011)

    Article  ADS  Google Scholar 

  12. Kim, J.K., Kim, S.S., Kim, W.J.: Appl. Phys. Lett. 88, 132901 (2006)

    Article  ADS  Google Scholar 

  13. Luo, B.C., Chen, C.L., **, K.X.: Solid State Commun. 151, 712–715 (2011)

    Article  ADS  Google Scholar 

  14. Zhang, Y.H., Yu, S.W., Cheng, J.R.: J. Eur. Ceram. Soc. 30, 271–275 (2010)

    Article  Google Scholar 

  15. Kumar, A., Varshney, D.: Ceram. Int. 38, 3935–3942 (2012)

    Article  Google Scholar 

  16. Kumar, A., Yadav, K.L., Rani, J.: Mater. Chem. Phys. 134, 430–434 (2012)

    Article  Google Scholar 

  17. Hu, G.D., Cheng, X., Wu, W.B., Yang, C.H.: Appl. Phys. Lett. 91, 232909 (2007)

    Article  ADS  Google Scholar 

  18. Raghavan, C.M., Kim, J.W., Kim, S.S.: Ceram. Int. 39, 3563–3568 (2013)

    Article  Google Scholar 

  19. Kawae, T., Tsuda, H., Morimoto, A.: Appl. Phys. Lett. 1, 051601 (2008)

    Google Scholar 

  20. Hu, H., Krupanidhi, S.B.: J. Mater. Res. 9, 1484 (1994)

    Article  ADS  Google Scholar 

  21. Straumal, B.B., Protasova, S.G., Mazilkin, A.A., Schütz, G., Goering, E., Baretzky, B., Straumal, P.B.: JETP Lett. 97, 367–377 (2013)

    Article  ADS  Google Scholar 

  22. Yan, F., Lai, M.O., Lu, L.: J. Phys. Chem. C 114, 6994–6998 (2010)

    Article  Google Scholar 

  23. Wu, J.G., Wang, J.: Acta Mater. 58, 1688–1697 (2010)

    Article  Google Scholar 

  24. Lee, S.U., Kim, S.S., Park, M.H., Kim, J.W., Jo, H.K., Kim, W.J.: Appl. Surf. Sci. 254, 1493–1497 (2007)

    Article  ADS  Google Scholar 

  25. Simmons, J.G.: Phys. Rev. Lett. 15, 967–968 (1965)

    Article  ADS  Google Scholar 

  26. Chiu, F.C., Lin, Z.H., Chang, C.W., Wang, C.C., Chuang, K.F., Huang, C.Y., Lee, J.Y., Hwang, H.L.: J. Appl. Phys. 97, 034506 (2005)

    Article  ADS  Google Scholar 

  27. Boni, A.G., Pintilie, I., Pintilie, L., Preziosi, D., Deniz, H., Alexe, M.: J. Appl. Phys. 113, 224103 (2013)

    Article  ADS  Google Scholar 

  28. Wu, J.G., Wang, J., **ao, D.Q., Zhu, J.G.: Mater. Res. Bull. 46, 2183–2186 (2011)

    Article  Google Scholar 

  29. Huang, A., Shannigrahi, S.R.: J. Alloys Compd. 509, 2054 (2011)

    Article  Google Scholar 

  30. Liu, J., Liu, Y., Chen, X.M., Dong, H.N.: Acta Phys. -Chim. Sin. 25, 107 (2009)

    ADS  Google Scholar 

  31. Liu, J., Li, M.Y., Pei, L., Wang, J., Yu, B.Y., Wang, X., Zhao, X.Z.: J. Alloys Compd. 493, 544–548 (2010)

    Article  Google Scholar 

  32. Sha, L., Miao, J., Wu, S.Z., Xu, X.G., Jiang, Y., Qiao, L.J.: J. Alloys Compd. 554, 299–303 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Project of the National Natural Science Foundation of China (Grant No. 51372145); the Academic Leaders Funding Scheme of Shaanxi University of Science & Technology (2013XSD06); Doctorate Scientific Research Initial Fund Program of Shaanxi University of Science & Technology(BJ4-13); and the Graduate Innovation Fund of Shaanxi University of Science and Technology (SUST-A04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Liu, W., Tan, G. et al. Two-Phase Coexistence and Multiferroic Properties of Cr-Doped BiFeO3 Thin Films. J Supercond Nov Magn 27, 2765–2772 (2014). https://doi.org/10.1007/s10948-014-2674-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2674-1

Keywords

Navigation