Log in

Optical Dipole Trap for Laser-Cooled Lithium-7 Atoms

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In this work, we discuss a far-off resonance optical dipole trap for cold lithium-7 atoms. A single optical trap** beam was produced by a continuous-wave fiber laser. Using our experimental data, we obtained important parameters of the trap, such as size of the cold atomic cloud, and evaluate the dipole potential and the rate of the trap losses. Information on temperature is acquired from observation of parametric resonances. We investigate the parametric resonances obtained with strong modulation of the trap potential and record superharmonics. We plan to prepare ultra-cold gas of highly-excited lithium atoms and study interactions between Rydberg atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett., 57, 314 (1986).

    Article  ADS  Google Scholar 

  2. R. Grimm, M. Weidem¨uller, and Y. B. Ovchinnikov, Adv. Atom. Mol. Opt. Phy., 42, 95 (2000).

    Article  ADS  Google Scholar 

  3. K. Martiyanov, V. Makhalov, and A. Turlapov, Phys. Rev. Lett., 105, 030404 (2010).

    Article  ADS  Google Scholar 

  4. N. Gross and L. Khaykovich, Phys. Rev. A, 77, 023604 (2008).

    Article  ADS  Google Scholar 

  5. N. Gross, Z. Shotan, S. Kokkelmans, and L. Khaykovich, Phys. Rev. Lett., 103, 163202 (2009).

    Article  ADS  Google Scholar 

  6. A. Keesling, A. Omran, H. Levine, et al., Nature, 568, 207 (2019).

    Article  ADS  Google Scholar 

  7. O. I. Berdasov, D. V. Sutyrin, S. A. Strelkin, et al., Quantum Electron., 48, 431 (2018).

    Article  ADS  Google Scholar 

  8. E. S. Kalganova, A. A. Golovizin, D. O. Shevnin, et al., Quantum Electron., 48, 415 (2018).

    Article  ADS  Google Scholar 

  9. A. Golovizin, E. Fedorova, D. Tregubov, et al., Nat. Commun., 10, 1724 (2019).

    Article  ADS  Google Scholar 

  10. P. Schaus, M. Cheneau, M. Endres, et al., Nature, 491, 7422 (2012).

    Article  Google Scholar 

  11. B. B. Zelener, S. A. Saakyan, V. A. Sautenkov, et al., J. Exp. Theor. Phys., 119, 795 (2014).

    Article  ADS  Google Scholar 

  12. V. A. Sautenkov, S. A. Saakyan, E. V. Vilshanskaya, et al., J. Russ. Laser Res., 38, 91 (2017).

    Article  Google Scholar 

  13. V. A. Sautenkov, S. A. Saakyan, A. A. Bobrov, et al., J. Opt. Soc. Am., 35, 1546 (2018).

    Article  ADS  Google Scholar 

  14. J. Sebastian, C. Gross, K. Li, et al., Phys. Rev. A, 90, 033417 (2014).

    Article  ADS  Google Scholar 

  15. H. S. Han, S. Yoon, and D. Cho, J. Korean Phys. Soc., 66, 1675 (2015).

    Article  ADS  Google Scholar 

  16. Y. V. Likhanova, S. B. Medvedev, M. P. Fedoruk, et al., JETP Lett., 103, 403 (2016).

    Article  ADS  Google Scholar 

  17. V. B. Makhalov, K. A. Martiyanov, and A. V. Turlapov, Metrologia, 53, 1287 (2016).

    Article  ADS  Google Scholar 

  18. V. B. Makhalov and A. V. Turlapov, Quantum Electron., 47, 431 (2017).

    Article  ADS  Google Scholar 

  19. S. Eckel, D. S. Barker, J. A. Fedchak, et al., Metrologia, 55, S182 (2018)

    Article  Google Scholar 

  20. T. A. Savard, K. M. O’Hara, and J. E. Thomas, Phys. Rev. A, 56, R1095 (1997).

    Article  ADS  Google Scholar 

  21. J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod. Phys., 71, 1 (1999).

    Article  ADS  Google Scholar 

  22. R. Jauregui, N. Poli, G. Roati, and G. Modugno, Phys. Rev. A, 64, 033403 (2001).

    Article  ADS  Google Scholar 

  23. R. Jauregui, Phys. Rev. A, 64, 053408 (2001).

    Article  ADS  Google Scholar 

  24. A. T. Grier, I. Ferrier-Barbut, B. S. Rem, et al., Phys. Rev. A, 87, 063411 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Sautenkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sautenkov, V.A., Saakyan, S.A., Bobrov, A.A. et al. Optical Dipole Trap for Laser-Cooled Lithium-7 Atoms. J Russ Laser Res 40, 230–236 (2019). https://doi.org/10.1007/s10946-019-09794-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-019-09794-4

Keywords

Navigation