Log in

Optimized caged silica synthesis with lithium chloride and calcium chloride impregnation for prospective desalination application

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

This article has been updated

Abstract

In twentieth century, nations are dealing with several problems related to fresh water availability that needs to be addressed at the earliest. Adsorption desalination by employing inorganic caged silica could be a feasible approach to address this pressing issue. Caged Silica is an inorganic sorbent that is widely employed in a variety of applications, including catalysts, thermal insulation, energy storage batteries, and as an adsorbent in the extraction of fresh water. Researchers have devised several techniques to prepare mono-dispersed caged silica with standard morphology. Template synthesis is quite prominent due to its structural stability and versatility. In this article, we present synthesis of caged silica microsphere via hard template synthesis by employing the process of calcination and subsequent drying. Emulsion polymerization was utilized to develop the polystyrene required in the procedure. This study also looks at how different parameters like silica precursor, surfactant, and catalyst affect silica morphology. We also impregnated Caged silica with 9% of hygroscopic salts (CaCl2 and LiCl) and it showed substantial uptake improvement. Preliminary results showed that LiCl impregnated caged silica is more efficient at water uptake compared to CaCl2.The proposed composite adsorbent (Si-9-Li & Si-9-Ca) could be a step** stone for improvement in the field of desalination, specifically in adsorbent development, and open new doors to exploration and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Change history

  • 04 February 2024

    The original online version of this article was revised: The email address of the author Muhammad Wakil Shahzad has been changed.

References

  1. M.A. Eltawil, Z. Zhengming, L. Yuan, A review of renewable energy technologies integrated with desalination systems. Renew. Sustain. Energy Rev. 13(9), 2245–2262 (2009)

    Google Scholar 

  2. M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv. 2(2), e1500323 (2016)

    PubMed  PubMed Central  Google Scholar 

  3. Miller, J. E. (2003). Review of water resources and desalination technologies (No. SAND2003–0800). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); Sandia National Lab.(SNL-CA), Livermore, CA (United States).

  4. A. Shahmirzadi, S.S. Hosseini, Environmental aspects of brine management in seawater desalination. Iran-Water Resour. Res. 10(3), 104–112 (2014)

    Google Scholar 

  5. K. Yang, Y. Shi, M. Wu, W. Wang, Y. **, R. Li, P. Wang, Hollow spherical SiO 2 micro-container encapsulation of LiCl for high-performance simultaneous heat reallocation and seawater desalination. J. Mater. Chem. A 8(4), 1887–1895 (2020)

    CAS  Google Scholar 

  6. M. Nemiwal, D. Kumar, Metal organic frameworks as water harvester from air: hydrolytic stability and adsorption isotherms. Inorg. Chem. Commun. 122, 108279 (2020)

    CAS  Google Scholar 

  7. L.G. Gordeeva, Y.D. Tu, Q. Pan, M.L. Palash, B.B. Saha, Y.I. Aristov, R.Z. Wang, Metal-organic frameworks for energy conversion and water harvesting: a bridge between thermal engineering and material science. Nano Energy 84, 105946 (2021)

    CAS  Google Scholar 

  8. N. Yu, R.Z. Wang, L.W. Wang, Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 39(5), 489–514 (2013)

    Google Scholar 

  9. X. Wang, X. Li, G. Liu, J. Li, X. Hu, N. Xu, J. Zhu, An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angew. Chem. 131(35), 12182–12186 (2019)

    Google Scholar 

  10. H. Qi, T. Wei, W. Zhao, B. Zhu, G. Liu, P. Wang, J. Zhu, An interfacial solar-driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption–desorption. Adv. Mater. 31(43), 1903378 (2019)

    CAS  Google Scholar 

  11. J. Xu, T. Li, J. Chao, S. Wu, T. Yan, W. Li, R. Wang, Efficient solar-driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt. Angew. Chem. Int. Ed. 59(13), 5202–5210 (2020)

    CAS  Google Scholar 

  12. Y.I. Aristov, G. Restuccia, G. Cacciola, V.N. Parmon, A family of new working materials for solid sorption air conditioning systems. Appl. Therm. Eng. 22(2), 191–204 (2002)

    CAS  Google Scholar 

  13. L.G. Gordeeva, A.D. Grekova, T.A. Krieger, Y.I. Aristov, Adsorption properties of composite materials (LiCl+ LiBr)/silica. Microporous Mesoporous Mater. 126(3), 262–267 (2009)

    CAS  Google Scholar 

  14. Y.I. Aristov, Challenging offers of material science for adsorption heat transformation: a review. Appl. Therm. Eng. 50(2), 1610–1618 (2013)

    CAS  Google Scholar 

  15. N. Yu, R.Z. Wang, Z.S. Lu, L.W. Wang, Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage. Int. J. Heat Mass Transf. 84, 660–670 (2015)

    CAS  Google Scholar 

  16. X. Zheng, L.W. Wang, R.Z. Wang, T.S. Ge, T.F. Ishugah, Thermal conductivity, pore structure and adsorption performance of compact composite silica gel. Int. J. Heat Mass Transf. 68, 435–443 (2014)

    CAS  Google Scholar 

  17. X. Zheng, R.Z. Wang, T.S. Ge, Experimental study and performance predication of carbon based composite desiccants for desiccant coated heat exchangers. Int. J. Refrig 72, 124–131 (2016)

    CAS  Google Scholar 

  18. M.O. Abdullah, I.A.W. Tan, L.S. Lim, Automobile adsorption air-conditioning system using oil palm biomass-based activated carbon: a review. Renew. Sustain. Energy Rev. 15(4), 2061–2072 (2011)

    CAS  Google Scholar 

  19. R. Li, Y. Shi, M. Alsaedi, M. Wu, L. Shi, P. Wang, Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environ. Sci. Technol. 52(19), 11367–11377 (2018)

    CAS  PubMed  Google Scholar 

  20. F. Zhao, X. Zhou, Y. Liu, Y. Shi, Y. Dai, G. Yu, Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater. 31(10), 1806446 (2019)

    Google Scholar 

  21. R.M. Anisur, J. Shin, H.H. Choi, K.M. Yeo, E.J. Kang, I.S. Lee, Hollow silica nanosphere having functionalized interior surface with thin manganese oxide layer: nanoreactor framework for size-selective Lewis acid catalysis. J. Mater. Chem. 20(47), 10615–10621 (2010)

    CAS  Google Scholar 

  22. H. Wang, M. Tang, K. Zhang, D. Cai, W. Huang, R. Chen, C. Yu, Functionalized hollow siliceous spheres for VOCs removal with high efficiency and stability. J. Hazard. Mater. 268, 115–123 (2014)

    CAS  PubMed  Google Scholar 

  23. A. Shkatulov, L.G. Gordeeva, I.S. Girnik, H. Huinink, Y.I. Aristov, Novel adsorption method for moisture and heat recuperation in ventilation: composites “LiCl/matrix” tailored for cold climate. Energy 201, 117595 (2020)

    CAS  Google Scholar 

  24. A. Frazzica, V. Brancato, A. Caprì, C. Cannilla, L.G. Gordeeva, Y.I. Aristov, Development of “salt in porous matrix” composites based on LiCl for sorption thermal energy storage. Energy 208, 118338 (2020)

    CAS  Google Scholar 

  25. J.Y. Wang, J.Y. Liu, R.Z. Wang, L.W. Wang, Experimental research of composite solid sorbents for fresh water production driven by solar energy. Appl. Therm. Eng. 121, 941–950 (2017)

    CAS  Google Scholar 

  26. J.Y. Wang, R.Z. Wang, L.W. Wang, Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents. Appl. Therm. Eng. 100, 893–901 (2016)

    CAS  Google Scholar 

  27. X.Y. Liu, W.W. Wang, S.T. **e, Q.W. Pan, Performance characterization and application of composite adsorbent LiCl@ ACFF for moisture harvesting. Sci. Rep. 11(1), 14412 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. D. Deepika, J. PonnanEttiyappan, Synthesis and characterization of microporous hollow core-shell silica nanoparticles (HCSNs) of tunable thickness for controlled release of doxorubicin. J. Nanopart. Res. 20, 1–15 (2018)

    CAS  Google Scholar 

  29. J. Ke, Y. Wang, L. Wang, B. Yang, K. Gou, Y. Qin, H. Li, Synthesis and characterization of core-shell mesoporous silica nanoparticles with various shell thickness as indomethacin carriers: in vitro and in vivo evaluation. Microporous Mesoporous Mater. 297, 110043 (2020)

    CAS  Google Scholar 

  30. M.N. Yeasmin, M. Sultana, A. Siddika, S. Tabassum, S.M. Ullah, M.S. Bashar, Structural, optical, and morphological characterization of silica nanoparticles prepared by sol-gel process. J. Turk. Chem. Soc. Sect. A: Chem. 9(4), 1323–1334 (2022)

    Google Scholar 

  31. X. Jiang, X. Tang, L. Tang, B. Zhang, H. Mao, Synthesis and formation mechanism of amorphous silica particles via sol–gel process with tetraethylorthosilicate. Ceram. Int. 45(6), 7673–7680 (2019)

    CAS  Google Scholar 

  32. G. Yang, Q. Guo, D. Yang, P. Peng, J. Li, Disperse ultrafine amorphous SiO2 nanoparticles synthesized via precipitation and calcination. Colloids Surf., A 568, 445–454 (2019)

    CAS  Google Scholar 

  33. G. Su, C. Yang, J.J. Zhu, Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine. Langmuir 31(2), 817–823 (2015)

    CAS  PubMed  Google Scholar 

  34. Gordeeva, L. G., & Aristov, Y. I. (2009). Nanocomposites (salt inside porous matrix) for methanol sorption: design of phase composition and sorption properties, practical applications. Sorbent: Prop., Mater. Appl.

  35. A. Shkatulov, R. Joosten, H. Fischer, H. Huinink, Core–shell encapsulation of salt hydrates into mesoporous silica shells for thermochemical energy storage. ACS Appl. Energy Mater. 3(7), 6860–6869 (2020)

    CAS  Google Scholar 

  36. M. Takeuchi, R. Kurosawa, J. Ryu, M. Matsuoka, Hydration of LiOH and LiCl─ near-infrared spectroscopic analysis. ACS Omega 6(48), 33075–33084 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Fang, Y. Xuan, Q. Li, Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. Sci. China Technol. Sci. 53, 3088–3093 (2010)

    CAS  Google Scholar 

  38. V. Herman, H. Takacs, F. Duclairoir, O. Renault, J.H. Tortai, B. Viala, Core double–shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization. RSC Adv. 5(63), 51371–51381 (2015)

    CAS  Google Scholar 

  39. A.N. Sabbar, H.S. Mohammed, A.R. Ibrahim, H.R. Saud, Thermal and optical properties of polystyrene nanocomposites reinforced with soot. Orient. J. Chem. 35(1), 455 (2019)

    CAS  Google Scholar 

  40. M. Agrawal et al., Synthesis of novel tantalum oxide sub-micrometer hollow spheres with tailored shell thickness. Langmuir 24(3), 1013–1018 (2008)

    CAS  PubMed  Google Scholar 

  41. Z. Deng, M. Chen, S. Zhou, B. You, L. Wu, A novel method for the fabrication of monodisperse hollow silica spheres. Langmuir 22(14), 6403–6407 (2006)

    CAS  PubMed  Google Scholar 

  42. N. Shukla, A. Debnath, S. Banerjee, Sonochemical synthesis of silica supported iron nanoparticles for enhanced removal of Cr (VI) species from aqueous medium. Nanotechnol. Environ. Eng. 7, 1–12 (2022)

    CAS  Google Scholar 

  43. X. Chen, H. Xu, C. Hua, J. Zhao, Y. Li, Y. Song, Synthesis of silica microspheres—inspired by the formation of ice crystals—With high homogeneous particle sizes and their applications in photonic crystals. Materials 11(10), 2017 (2018)

    PubMed  PubMed Central  Google Scholar 

  44. R. Ellerbrock, M. Stein, J. Schaller, Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Sci. Rep. 12(1), 11708 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. M.M. Baig, M.A. Yousuf, I.A. Alsafari, M. Ali, P.O. Agboola, I. Shakir, M.F. Warsi, New mesostructured origami silica matrix: a nano-platform for highly retentive and pH-controlled delivery system. J. Taibah Univ. Sci. 15(1), 133–144 (2021)

    Google Scholar 

  46. L.I.U. Chun, H.B. Yin, A.L. Wang, Z.A. Wu, W.U. Gang, T. Jiang, T.S. Jiang, Size-controlled preparation of hollow silica spheres and glyphosate release. Trans. Nonferrous Metals Soc. China 22(5), 1161–1168 (2012)

    Google Scholar 

  47. B.U. Yoo, M.H. Han, H.H. Nersisyan, J.H. Yoon, K.J. Lee, J.H. Lee, Self-templated synthesis of hollow silica microspheres using Na2SiO3 precursor. Microporous Mesoporous Mater. 190, 139–145 (2014)

    CAS  Google Scholar 

  48. C.M. Hoo, N. Starostin, P. West, M.L. Mecartney, A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanopart. Res. 10, 89–96 (2008)

    CAS  Google Scholar 

  49. J. Yuan, T. Zhou, H. Pu, Nano-sized silica hollow spheres: preparation, mechanism analysis and its water retention property. J. Phys. Chem. Solids 71(7), 1013–1019 (2010)

    CAS  Google Scholar 

  50. I. Park, S.H. Ko, Y.S. An, K.H. Choi, H. Chun, S. Lee, G. Kim, Monodisperse polystyrene-silica core-shell particles and silica hollow spheres prepared by the stöber method. J. Nanosci. Nanotechnol. 9(12), 7224–7228 (2009)

    CAS  PubMed  Google Scholar 

  51. D. Niu, Z. Ma, Y. Li, J. Shi, Synthesis of core− shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J. Am. Chem. Soc. 132(43), 15144–15147 (2010)

    CAS  PubMed  Google Scholar 

  52. C. Wang, B. Yang, X. Ji, R. Zhang, H. Wu, Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification. Energy 251, 123874 (2022)

    CAS  Google Scholar 

  53. R.H. Mohammed, E. Rashad, R. Huo, M. Su, L.C. Chow, Pore-size engineered nanoporous silica for efficient adsorption cooling and desalination cycle. npj Clean Water 4(1), 38 (2021)

    CAS  Google Scholar 

  54. M.W. Shahzad, D. Ybyraiymkul, Q. Chen, M. Burhan, M. Kumja, K.C. Ng, B.B. Xu, Pressure driven adsorption cycle integrated with thermal desalination. Case Stud. Thermal Eng. 41, 102608 (2023)

    Google Scholar 

  55. K.C. Ng, M. Burhan, Q. Chen, D. Ybyraiymkul, F.H. Akhtar, M. Kumja, M.W. Shahzad, A thermodynamic platform for evaluating the energy efficiency of combined power generation and desalination plants. npj Clean Water 4(1), 25 (2021)

    Google Scholar 

  56. H.S. Son, M.W. Shahzad, N. Ghaffour, K.C. Ng, Pilot studies on synergetic impacts of energy utilization in hybrid desalination system: multi-effect distillation and adsorption cycle (MED-AD). Desalination 477, 114266 (2020)

    CAS  Google Scholar 

  57. M.W. Shahzad, M. Burhan, N. Ghaffour, K.C. Ng, A multi evaporator desalination system operated with thermocline energy for future sustainability. Desalination 435, 268–277 (2018)

    CAS  Google Scholar 

  58. M.W. Shahzad, M. Burhan, K.C. Ng, Pushing desalination recovery to the maximum limit: membrane and thermal processes integration. Desalination 416, 54–64 (2017)

    CAS  Google Scholar 

  59. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-water-environment nexus underpinning future desalination sustainability. Desalination 413, 52–64 (2017)

    CAS  Google Scholar 

  60. M.W. Shahzad, K.C. Ng, An improved multievaporator adsorption desalination cycle for gulf cooperation council countries. Energ. Technol. 5(9), 1663–1669 (2017)

    Google Scholar 

  61. M.W. Shahzad, K. Thu, Y.D. Kim, K.C. Ng, An experimental investigation on MEDAD hybrid desalination cycle. Appl. Energy 148, 273–281 (2015)

    Google Scholar 

  62. K. Thu, Y.D. Kim, M.W. Shahzad, J. Saththasivam, K.C. Ng, Performance investigation of an advanced multi-effect adsorption desalination (MEAD) cycle. Appl. Energy 159, 469–477 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank RAEng / Leverhulme Trust Research Fellowships Tranche 19 for FAM project (LTRF2223-19-103), Northumbria University UK and Northern Accelerator Proof-of-Concept award for AD4DCs (NACCF-232) Awarded to Dr. Muhammad Wakil Shahzad. The authors also would like to thank to KAUST cooling initiative (REP/1/3988-01-01) for the support provided.

Funding

KAUST cooling initiative, REP/1/3988-01-01, Northumbria University UK and Northern Accelerator Proof-of-Concept award for AD4DCs, NACCF-232

Author information

Authors and Affiliations

Authors

Contributions

SK and JRK wrote the main manuscript. KCN and MKJ helped with the experimental results. MI and MWS provided the guidance for research. All authors reviewed the manuscript.

Corresponding author

Correspondence to Muhammad Wakil Shahzad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khushnood, S., Khan, J.R., Ng, K.C. et al. Optimized caged silica synthesis with lithium chloride and calcium chloride impregnation for prospective desalination application. J Porous Mater 31, 625–641 (2024). https://doi.org/10.1007/s10934-023-01536-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01536-x

Keywords

Navigation