Log in

Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly(3-hydroxybutirate) scaffold for tissue engineering applications

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this study, regarding the importance of optimal design and unique role of a scaffold in tissue regeneration and repair, poly(hydroxybutyrate) (PHB)/multiwalled carbon nanotubes (CNTs) nanocomposite scaffolds with different samples concentrations of CNTs (0, 0.5, 0.75, 1.0, and 1.25% w/v) was prepared by electrospinning technique. Morphological evaluation of scaffolds by using scanning electron microscopy showed the pore volume in all the scaffolds was over 80% and the addition of CNTs increased the average fiber diameter, from 210 nm (neat PHB) to 500 nm at 1.0% CNTs. To evaluate the structural properties of scaffolds, transmission electron microscopy and Fourier transform infrared spectroscopy were used and showed the presence of CNTs at along the fibers. The analysis of mechanical properties of the PHB/CNTs composites by using universal testing machine revealed great improvement over pure PHB scaffold, so that the tensile stress of the PHB/0.5%CNTs scaffolds was increased by 157%. The bioactivity of scaffolds was analyzed by placing them in simulated body fluid for 4 weeks and results showed that CNTs increase the bioactivity of scaffolds. The wettability of the scaffolds was evaluated with a conventional sessile drop method. The results of contact angles of surface showed that CNTs treatment increases the surface wettability. The attachment ability and viability of osteosarcoma cell lines MG-63 in presence of the scaffolds were also investigated. The attachment and proliferation of MG-63 were significantly increased in the PHB/CNTs scaffolds compared with the PHB control. Therefore, the PHB/CNTs composite scaffolds may be potentially useful in tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Abukawa, H. Terai, D. Hannouche, J.P. Vacanti, L.B. Kaban, M.J. Troulis, J. Oral. Maxillofac. Surg. 61, 94 (2003)

    Article  Google Scholar 

  2. D.J. Aframian, R. David, H. Ben-Bassat, E. Shai, D. Deutsch et al., Tissue Eng. 10, 914 (2004)

    Article  CAS  Google Scholar 

  3. E. Alsberg, E.E. Hill, D.J. Mooney, Crit. Rev. Oral. Biol. Med. 12(1), 64 (2001)

    Article  CAS  Google Scholar 

  4. F.A. Auger, F. Berthod, V. Moulin et al., Biotechnol. Appl. Biochem. 39(Pt 3), 263 (2004)

    CAS  Google Scholar 

  5. P.M. Bartold, C.A. McCulloch, A.S. Narayanan et al., Periodontology 24, 253 (2000)

    Article  CAS  Google Scholar 

  6. B.J. Baum, D.J. Mooney, J. Am. Dent. Assoc. 131, 309 (2000)

    Article  CAS  Google Scholar 

  7. C.M. Agrawal, R.B. Ray, J. Biomed. Mater. Res. 55, 141 (2001)

    Article  CAS  Google Scholar 

  8. L. Almany, D. Seliktar, Biomaterials 26, 2467 (2005)

    Article  CAS  Google Scholar 

  9. G.H. Altman, F. Diaz, C. Jakuba et al., Silk-based biomaterials. Biomaterials 24, 401–416 (2003)

    Article  CAS  Google Scholar 

  10. S.F. Badylak, Transpl. Immunol. 12, 367 (2004)

    Article  CAS  Google Scholar 

  11. L.R. Sakaguchi, J.M. Powers, in Craig’s Restorative Dental Materials, 13th edn. Tissue engineering (Elsevier Mosby, St. Louis, MO, 2015), pp. 369–384

    Google Scholar 

  12. A. Hasan, A. Memic, N. Annabi, M. Hossain, A. Paul, R. Mehmet, F. Dehghani, A. Khademhosseini, Acta Biomater. 10(1), 11 (2013)

    Article  Google Scholar 

  13. J. KucinskaLipka, I. Gubanska, H. Janik, M. Sienkiewicz, Mater. Sci. Eng. C. 46, 166 (2015)

    Article  CAS  Google Scholar 

  14. T. Jiang, J.E. Carbone, C.T. Laurencin, Prog. Polym. Sci. (2014). doi:10.1016/j.progpolymsci.2014.12.001

    Google Scholar 

  15. A.R. Unnithan, R.S. Arathyram, C.H.S. Kim, in Nanotechnology Applications for Tissue Engineering, Chap. 3 Electrospinning of Polymers for Tissue Engineering, (Elsevier Mosby, St. Louis, MO, 2015) pp. 45–55

    Chapter  Google Scholar 

  16. M. Spasova, O. Stoilova, I. Manolova, I. Rashkov, J. Bioact. Compat. Polym. 26, 48 (2011)

    Article  CAS  Google Scholar 

  17. S.J. Hollister, R.D. Maddox, J.M. Taboas, Biomaterials 23, 4095 (2002)

    Article  CAS  Google Scholar 

  18. X. Qi, Z. Mou, J. Zhang, Z. Zhang, J. Biomed. Mater. Res. 102, 366 (2014)

    Article  Google Scholar 

  19. S.H. Wua, X. Liu, W. Kelvin, K. Yeung, Mater. Sci. Eng. R 80, 1 (2014)

    Article  Google Scholar 

  20. S. Ravindran, M. Kotecha, C.C. Huang, A. Ye, P. Pothirajan, Z. Yin, R. Magin, A. George, Biomaterials. (2015). doi:10.1016/j.biomaterials.2015.08.030

    Google Scholar 

  21. N. Shadjou, M. Hasanzadeh, Mater. Sci. Eng. C (2015). doi:10.1016/j.msec.2015.05.027.

    Google Scholar 

  22. R.C. Younga, G. Terenghia, M. Wiberg, Br. J. Plast. Surg. 55, 235 (2002)

    Article  Google Scholar 

  23. M. Niaounakis, Biopolymers: Applications and Trends—Processing and Part Fabrication. (Copyright© 2015 Elsevier B.V), p. 91

  24. Niaounakis M (2015) Biopolymers: Applications and Trends—Definitions of Terms and Types of Biopolymers. (Copyright© 2015 Elsevier B.V), p. 1

  25. H. Hajiali, S. Karbasi et al., J. Mater. Sci. 21, 2125 (2010)

    CAS  Google Scholar 

  26. R. Iron, M. Mehdikhani, S. Karbasi, 5th International Congress on Nanoscience & Nanotechnology. ICNN2014

  27. N.W. Shi Kam, T.C. Jessop, P.A. Wender, H. Dai, J. Am. Chem. Soc. 126(22), 6850 (2004)

    Article  Google Scholar 

  28. A. Bianco, K. Kostarelos, M. Prato, Chem. Commun. 37, 10182 (2011)

  29. L. Zhuang, T. Scott, W. Kevin Hongjie, Nano Res. 2(2), 85 (2009)

    Article  Google Scholar 

  30. B.S. Harrison, A. Atala, Biomaterials 28, 44 (2007)

    Google Scholar 

  31. A. Bianco, K. Kostarelos, C.D. Partidos, M. Prato, Chem. Commun. 1, 571 (2005)

    Article  Google Scholar 

  32. S. Iijima, Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  33. E.T. Thostenson, Z. Ren, T.W. Chou, Compos. Sci. Technol. 61, 1899 (2001)

    Article  CAS  Google Scholar 

  34. P.G. Collins, P. Avouris, Sci. Am. 283, 62 (2000)

    Article  CAS  Google Scholar 

  35. H. Zhang, J. Bioact. Compat. Polym. 26(4), 347 (2011)

    Article  Google Scholar 

  36. J.B. Yoo, J.S. Jeong, J.S. Moon, S.Y. Jeong, J.H. Park, J. Phys. Chem. Solids (2006). doi:10.1016/j.tsf.2006.10.058

  37. Q. Chen, J.A. Roether, A.R. Boccaccini, in Topics in Tissue Engineering, vol 4, ed. by N. Asham makhi, R. Reis, F. Chiellini© 2008

  38. H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, L. Cheng, Biomaterials 28, 3338 (2007)

    Article  CAS  Google Scholar 

  39. L. Shor, S. Guceri, X. Wen, M. Gandhi, W. Sun, Biomaterials 28, 5291 (2007)

    Article  CAS  Google Scholar 

  40. M.D. Kofron, J.R. Cooper, S.G. Kumbar, C.T. Laurencin, J. Biomed. Mater. Res. 82, 415 (2007)

    Article  CAS  Google Scholar 

  41. A. Bagchi, S.R. Meka, B.N. Rao, K. Chatterjee, Nanotechnology 25(48), 485101 (2014)

  42. G.M. Kim, G.H. Michler, P. tschke, Polymer 46, 7346 (2005)

    Article  CAS  Google Scholar 

  43. Y. Dror, W. Salalha, R.L. Khalfin, Y. Cohen, A.L. Yarin, E. Zussman, Langmuir 19, 7012 (2003)

    Article  CAS  Google Scholar 

  44. Q.U. Song, W. Joseph, Y. **ao, Chem. Eur. J. 13(3), 723 (2007)

    Article  Google Scholar 

  45. L. Ghasemi Mobarakeh, D. Semnani, M. Morshed, J. Appl. Polym. Sci. 106, 2536 (2007)

    Article  CAS  Google Scholar 

  46. ISO 1798:2008 Flexible cellular polymeric materials, Determination of tensile strength and elongation at break. Document published on: 2008-02-01. http://www.iso.org/iso/catalogue_detail.htm?csnumber=41059.

  47. S.M. Gubanski, A.E. mastos, IEEE Trans. Power Delivery 5(3), 1527 (1990)

    Article  CAS  Google Scholar 

  48. J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C. Beck Tan, Polymer 42, 261 (2001)

    Article  CAS  Google Scholar 

  49. M. Naebe, T. Lin, X. Wang, in Nanofibers, ed by A. Kumar (InTech, Rijeka, Croatia, 2010), p. 309

    Google Scholar 

  50. E.D. Boland, D. Branch, P. Catherine, G. David, E. Gary, L. Gary, Acta Biomater. 1, 115 (2005)

    Article  Google Scholar 

  51. C. Ayres, G.L. Bowlin, S.C. Henderson, L. Taylor, J. Shultz, J. Alexander, T.A. Telemeco, D.G. Simpson, Biomaterials 27(32), 5524 (2006)

    Article  CAS  Google Scholar 

  52. J. Stephen, W. William, J. Roy. Soc. Interface 2, 309 (2005)

    Article  Google Scholar 

  53. M.D. Landete-Ruiz, J.A. Martínez-Díez, M.A. Rodriguez-Perez, J.A. De Saja, J.M. Martin-Martínez, J. Adhes. Sci. Technol. 16, 1073 (2002)

    Article  CAS  Google Scholar 

  54. J. Amit, Braz. Arch. Biol. Technol (2016). doi:10.1590/1678-4324-2016150644

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Karbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, M., Karbasi, S. Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly(3-hydroxybutirate) scaffold for tissue engineering applications. J Porous Mater 25, 259–272 (2018). https://doi.org/10.1007/s10934-017-0439-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0439-5

Keywords

Navigation