Log in

Appraisal of microwave-assisted ion-exchange in mordenite by crystal structure analysis

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Transition metal-containing mordenite have been prepared by solid state ion exchange with microwave irradiation of mechanical mixtures of CoCl2·6H2O, NiCl2·6H2O and CuCl2·2H2O with mordenite at 750 W microwave power and for 10–20 min treatment time. The prepared transition metal-mordenite were characterized by X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), simultaneous TG and DTA thermal analyses (TG/DTA), surface area measurement (BET), and diffuse reflectance spectroscopy (DRS). The results show that Co2+, Ni2+, and Cu2+ metal ions are actually incorporated into mordenite pores. The extra-framework locations of metal cations were determined Rietveld refinement of XRD data, performed in the Cmcm space group for all three samples. Three metal sites were located: the first site is in an almost perfect boat-shaped coordination with framework oxygen’s, the second site is poorly coordinated while the third metal cation site was found at the center of mordenite cage in six-fold coordination to water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Frising, P. Leflaive, Extraframework cation distributions in X, Y faujasite zeolites: A review. Microporous Mesoporous Mater. 114, 27–63 (2008)

    Article  CAS  Google Scholar 

  2. G. Cruciani, Zeolites upon heating: Factors governing their thermal stability and structural changes. J. Phys. Chem. Solids 67, 1973–1994 (2006)

    Article  CAS  Google Scholar 

  3. I. Braun, G. Schulf-Ekloff, M. Bocksette, D. Wohrle, Microwave-assisted crystallization inclusion of coumarin and azo dyes in alpo4–5 molecular sieves. Zeolites 19, 128 (1997)

    Article  CAS  Google Scholar 

  4. S. Collin, Cundy, Microwave Techniques in the Synthesis and Modification of Zeolite Catalysts. A Review. Collect. Czech. Chem. Comm. 63, 1699–1723 (1998)

    Article  Google Scholar 

  5. M. Zendehdel, M. Kooti, M.M. Amini, Dispersion and Solid State Ion Exchange of VCl3, CrCl3.6H2O, MnCl2.4H2O and CoCl2.6H2O onto the Surface of NaY Zeolite Using Microwave Irradiation. J. Pores. Mater. 12, 143–149 (2005)

    Article  CAS  Google Scholar 

  6. A. Fini, A. Breccia, Chemistry by microwaves. Pure Appl. Chem. 71, 573–579 (1999)

    Article  CAS  Google Scholar 

  7. M. Kooti, M. Zendehdel, M. Mohammadpour amini, Esterification and Intramoleculare Acylation Reactions with Transition Metal/Zeolites. J. Inclusion Phenom. Macrocyclic Chem. 42, 265 (2002)

    Article  CAS  Google Scholar 

  8. M. Zendehdel, N. Fouroghfar, Z. Gaykani, Diels-Alder Reaction with Transition Metal/Zeolites. J. Inclusion Phenom. Macrocyclic Chem. 53, 47–49 (2005)

    Article  CAS  Google Scholar 

  9. X. Li, X. Zhang, L. Lei, Preparation of CuNaY zeolites with microwave irradiation and their application for removing thiophene from model fuel. Sep. Purif. Technol. 64, 326–331 (2009)

    Article  CAS  Google Scholar 

  10. M.D. Romero, G. Ovejero, M.A. Uguina, A. Rodriguez, J.M. Gomez, Fast removal of the acid properties in the NaX zeolite by ion-exchange under microwave heating. Catal. Commun. 5, 157–160 (2004)

    Article  CAS  Google Scholar 

  11. J.A. Heuser, W.U. Spendel, A.N. Pisarenko, C. Yu, M.J. Pechan, G.E. Pacey, Formation of surface magnetite nanoparticles from iron-exchanged zeolite using microwave radiation. J. Mater. Sci. 42, 9057–9062 (2007)

    Article  CAS  Google Scholar 

  12. D. Yin, D. Yin, The dispersion and solid-state ion exchange of ZnCl2 onto the surface of NaY zeolite using microwave irradiation. Microporous Mesoporous Mater. 24, 123–126 (1998)

    Article  CAS  Google Scholar 

  13. H. Firstar, U. Hatje, Investigations on the solid-state ion exchange of Ni2+, Cu+ and Zn2+ ions into zeolite Y using EXAFS techniques. Solid State Ionics 101–103, 425–430 (1997)

    Google Scholar 

  14. A.A. Agaev, K.M. Madatzade, Catalytic Activity of a Mordenite Catalyst in Alkylation of Xylenols with Methanol. Russ. J. Appl. Chem. 78, 683–684 (2005)

    Article  CAS  Google Scholar 

  15. J.A. Gray, J.T. Cobb Jr, Hydroisomerization and hydrocracking of normal pentane over various mordenite catalysts. J. Catal. 36, 125–141 (1975)

    Article  CAS  Google Scholar 

  16. C. Bouvier, W. Buijs, J. Gascon, F. Kapteijn, B.C. Gagea, P.A. Jacobs, J.A. Martens, Shape-selective diisopropylation of naphthalene in H-Mordenite: Myth or reality? J. Catal. 270, 60–66 (2010)

    Article  CAS  Google Scholar 

  17. W.M. Meier, The crystal structure of mordenite. Z. Kristallogr. 115, 439–450 (1961)

    Article  CAS  Google Scholar 

  18. P. Simoncic, T. Armbruster, Am. Mineral. 89, 421–431 (2004)

    CAS  Google Scholar 

  19. A. Martucci, M. Sacerdoti, G. Cruciani, C. Dalconi, In situ time resolved synchrotron powder diffraction study of mordenite. Eur. J. Mineral. 15, 485–493 (2003)

    Article  CAS  Google Scholar 

  20. A.C. Larson, R.B. Von Dreele, GSAS, general structure analysis system. Los Alamos National Laboratory, Los Alamos, NM. Laur 86, 748 (1988)

    Google Scholar 

  21. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)

    Article  CAS  Google Scholar 

  22. F.R. Ribeiro, A.E. Rodrigousem, L.D. Rollmann, C. Naccache, Zeolite: Science and Technology, NATO ASI series (Marinus Nijhoff Publisher, The Hauge, 1983)

    Google Scholar 

  23. S.I. Mostafa, S. Ikedab, B. Ohtani, Transition metal Schiff-base complexes chemically anchored on Y-zeolite: their preparation and catalytic epoxidation of 1-octene in the suspension and phase boundary systems. J.Mol. Catal. A Chem. 225, 181–188 (2005)

    Article  CAS  Google Scholar 

  24. S. Nanjundan, C.S. Jone Selvamalar, R. Jayakumar, Synthesis and characterization of poly (3-acetyle -4-hydroxyphenyl acrylate) and its Cu(II) and Ni(II) complexes. Eur. Polym. J. 40, 2313–2321 (2004)

    Article  CAS  Google Scholar 

  25. M.A. Zanjanchi, A. Ebrahimian, Studies on the solid-state ion exchange of nickel ions into zeolites using DRS technique. J. Mol. Struct. 693, 211–216 (2004)

    Article  CAS  Google Scholar 

  26. A.N. Pesteryakov, V.P. Petranovskii, A. Kryazhov, O. Ozhereliev, N. Pfander, A. Knop-Gericke, Study of copper nanoparticles formation on supports of different nature by UV-Vis diffiuse reflectance spectroscopy. Chem.Phys.Lett. 385, 173–176 (2004)

    Article  Google Scholar 

  27. B. Jasiewicz, E. Sikorska, I.V. Khmelinskii, B. Warzajtis, U. Rychlewska, W. Boczon, M. Sikorski, Spectroscopy and structure of spartine and 2-methyl spartine dichloride metal complexes. J. Mol. Struct. 707, 89–96 (2004)

    Article  CAS  Google Scholar 

  28. M.C. Dalconi, G. Cruciani, A. Alberti, P. Ciambelli, Over-loaded Cu-ZSM-5 upon heating treatment: A time resolved X-ray diffraction study. Microporous Mesoporous Mater. 94, 139–147 (2006)

    Article  CAS  Google Scholar 

  29. K. Itabashi, A. Matsumoto, T. Ikeda, M. Kato, K. Tsutsumi, Synthesis and characteristic properties of Rb-mordenite. Microporous Mesoporous Mater. 101, 57–65 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The corresponding author gratefully acknowledge of Arak University for supported her in sabbatical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zendehdel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zendehdel, M., Cruciani, G. & Dondi, M. Appraisal of microwave-assisted ion-exchange in mordenite by crystal structure analysis. J Porous Mater 19, 361–368 (2012). https://doi.org/10.1007/s10934-011-9482-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9482-9

Keywords

Navigation