Log in

Synthesis of mixed silica–titania by the sol–gel method using polyethylenimine: porosity and catalytic properties

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

By means of the sol–gel method, hybrid xerogels of silica, titania and silica–titania mixed networks of different composition with polyethylenimine (PEI) were formed. After removal of PEI followed by calcination, mesoporous oxides of high surface area with monomodal and narrow porosity distribution were obtained. The surface area of the mixed oxides decreases with increasing titania content, but pore size remains almost constant when a PEI:(SiO2 + TiO2) ratio of 1 is kept constant in the xerogel precursor. By doubling and tripling the proportion of PEI, the surface area increases by 15% and 30%, respectively, but pore size remains constant, indicating the formation of a larger number of PEI domains of similar size in the hybrid. Isopropanol decomposition reactions were carried out using the mixed oxides as catalysts, and it was found that the networks contain Lewis acid sites but lack Brønsted acid sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.E. Vos, M. Dams, B.F. Sels, P.J. Jacobs, Chem. Rev. 102, 3615 (2002)

    Article  Google Scholar 

  2. B.T. Holland, C.F. Blanford, T. Do, A. Stein, Chem. Mater. 11, 795 (1999)

    Article  CAS  Google Scholar 

  3. D.C.M. Dutoit, M. Schneider, R. Hutter, A. Baiker, J. Catal. 161, 651 (1996)

    Article  CAS  Google Scholar 

  4. R.D. Gonzalez, T. Lopez, R. Gomez, Catal. Today 35, 293 (1997)

    Article  CAS  Google Scholar 

  5. J.B. Miller, E.I. Ko, Catal. Today 35, 269 (1997)

    Article  CAS  Google Scholar 

  6. J. Livage, Catal. Today 41, 3 (1998)

    Article  CAS  Google Scholar 

  7. S. Hu, R.J. Willey, B. Notari, J. Catal. 220, 240 (2003)

    Article  CAS  Google Scholar 

  8. N.E. Quaranta, J. Soria, V. Cortés, J.L.G. Fierro, J. Catal. 171, 1 (1997)

    Article  CAS  Google Scholar 

  9. M. Schneider, A. Baiker, Catal. Today. 35, 339 (1997)

    Article  CAS  Google Scholar 

  10. L.L. Hench, J.K. West, Chem. Rev. 90, 33 (1990)

    Article  CAS  Google Scholar 

  11. D. Ward, E.I. Ko, Ind. Chem. Res. 34, 421 (1995)

    Article  CAS  Google Scholar 

  12. J.M. Domínguez, J.L. Hernández, G. Sandoval, Appl. Catal. A-Gen. 197, 119 (2000)

    Article  Google Scholar 

  13. Y. Chujo, T. Saegusa, Adv. Polym. Sci. 100, 12 (1992)

    Google Scholar 

  14. P. Judeinstien, C. Sánchez, J. Mater. Chem. 6, 511 (1996)

    Article  Google Scholar 

  15. R.J.P. Corriu, J.J. Moreau, P. Thépot, M.W. ChiMan, J. Mater. Chem. 4, 987 (1994)

    Article  CAS  Google Scholar 

  16. M. Antonietti, R.A. Caruso, G.C. Goltner, M.C. Weissenberger, Macromolecules 32, 1383 (1999)

    Article  CAS  Google Scholar 

  17. G.J.A Soler-Illia, E.L. Crepaldi, D. Grosso, C. Sanchez, Curr. Opin. Colloid Interf. 8, 109 (2003)

    Article  CAS  Google Scholar 

  18. A. Imhof, D.J. Pine, Nature 389, 948 (1997)

    Article  CAS  Google Scholar 

  19. G.J.De.A.A. Soller-Illia, C. Sánchez, B. Lebeau, J. Patarin, Chem. Rev. 102, 4093 (2002)

    Article  Google Scholar 

  20. P.T. Tanev, T.J. Pinnavaia, Science 267, 865 (1995)

    Article  CAS  Google Scholar 

  21. P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Chem. Mater. 11, 2813 (1999)

    Article  CAS  Google Scholar 

  22. J. Retuert, R. Quijada, V. Arias, Chem. Mater. 10, 3923 (1998)

    Article  CAS  Google Scholar 

  23. E. Pabón, J. Retuert, R. Quijada, A. Zarate, Micropor. Mesopor. Mater. 67, 195 (2004)

    Article  Google Scholar 

  24. J.Y. Zheng, J.B. Pang, K.Y. Qiu, Y. Wei, Micropor. Mesopor. Mater. 49, 189 (2001)

    Article  CAS  Google Scholar 

  25. K.S.W. Sing, D.H. Everett, W. Haul, R.A.L. Moscou, J. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)

    CAS  Google Scholar 

  26. R.J. Davis, Z. Liu, Chem. Mater. 9, 2311 (1997)

    Article  CAS  Google Scholar 

  27. X. Gao, I.E. Wachs, Catal. Today 51, 233 (1999)

    Article  CAS  Google Scholar 

  28. H. Izutsu, P.K. Nair, K. Maeda, Y. Kiyozumi, F. Mizukami, Mater. Res. Bull. 32, 1303 (1997)

    Article  CAS  Google Scholar 

  29. D.C.M. Dutoit, M. Schneider, A. Baiker, J. Catal. 153, 165 (1995)

    Article  CAS  Google Scholar 

  30. J.E. Rekoske, M.A. Barteu, J. Catal. 165, 57 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) through FONDAP Project 11980002 and FONDECYT Project 1050651.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pabón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pabón, E., Retuert, J. & Quijada, R. Synthesis of mixed silica–titania by the sol–gel method using polyethylenimine: porosity and catalytic properties. J Porous Mater 14, 151–158 (2007). https://doi.org/10.1007/s10934-006-9019-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-006-9019-9

Keywords

Navigation