Log in

Nano-TiO2 Modified Wheat Straw/Polylactic Acid Composites Based on Synergistic Effect Between Interfacial Bridging and Heterogeneous Nucleation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

To improve the interfacial compatibility of wheat straw/polylactic acid (WS/PLA) composites, nano-TiO2 with different particle sizes was blended with molten PLA to modify straw fiber to obtain a nano-TiO2 modified WS/PLA composite. This study explored the effect of the nano-TiO2 particle size on the properties of the WS/PLA composites using mechanical property tests, contact angle measurements, water absorption tests, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The tensile strength and flexural strength of the modified composite improved to 44.9 MPa and 95 MPa, respectively. Mechanistic studies showed that nano-TiO2 played modified the interface and improved the interfacial compatibility of the composites by promoting the heterogeneous nucleation and rapid crystallization of PLA, which formed a stable crystal structure between the straw fiber and the PLA matrix. This study provides a method to develop biomass composites to solve environmental problems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771

    Article  CAS  PubMed  Google Scholar 

  2. Liang Y, Tan Q, Song Q (2021) An analysis of the plastic waste trade and management in Asia. Waste Manage 119:242–253

    Article  Google Scholar 

  3. Mourshed M, Masud MH, Rashid F, Joardder M (2017) Towards the effective plastic waste management in Bangladesh: a review. Environ Sci Pollut R 24(35):27021–27046

    Article  Google Scholar 

  4. Shieh P, Zhang W, Husted K (2020) Publisher Correction: Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 585(7823):E4–E4

    Article  CAS  PubMed  Google Scholar 

  5. Ammala A, Bateman S, Dean K, Petinakis E, Sangwan P, Wong S (2011) An overview of degradable and biodegradable polyolefins. Prog Polym Sci 36(8):1015–1049

    Article  CAS  Google Scholar 

  6. Liang Z, Sintim HY, Bary AI, Hayes DG, Wadsworth LC, Anunciado MB (2018) Interaction of lumbricus terrestris with macroscopic polyethylene and biodegradable plastic mulch. Sci Total Environ 635:1600–1608

    Article  CAS  Google Scholar 

  7. Sintim HY, Bary AI, Hayes DG, English ME, Schaeffer SM, Miles CA (2019) Release of micro-and nanoparticles from biodegradable plastic during in situ composting. Sci Total Environ 675:686–693

    Article  CAS  PubMed  Google Scholar 

  8. Meereboer KW, Misra M, Mohanty AK (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (pha) bioplastics and their composites. Green Chem 22(17):5519–5558

    Article  CAS  Google Scholar 

  9. Takhulee A, Takahashi Y, Visit V-S (2017) Molecular simulation and experimental studies of the miscibility of pla/plax-pegy-plax blends. J Polym Res 24(11):178

    Article  CAS  Google Scholar 

  10. Zhang M, Ding X, Zhan Y, Wang Y, Wang X (2020) Improving the flame retardancy of poly(lactic acid) using an efficient ternary hybrid flame retardant by dual modification of graphene oxide with phenylphosphinic acid and nano mofs—sciencedirect. J Hazard Mater 384:121260–121260

    Article  CAS  PubMed  Google Scholar 

  11. McKeown P, Kamran M, Davidson MG, Jones MD, Román-Ramírez LA, Wood J (2020) Organocatalysis for versatile polymer degradation. Green Chem 22(12):3721–3726

    Article  CAS  Google Scholar 

  12. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (pla) research. Bioresource Technol 101(22):8493–8501

    Article  CAS  Google Scholar 

  13. Wu D, Lv Q, Feng S, Chen J, Chen Y, Qiu Y (2015) Polylactide composite foams containing carbon nanotubes and carbon black: synergistic effect of filler on electrical conductivity. Carbon 95:380–387

    Article  CAS  Google Scholar 

  14. Sun C, Huang Z, Liu Y, Li C, Zhang Y (2020) The effect of carbodiimide on the stability of wood fiber/poly(lactic acid) composites during soil degradation. J Polym Environ 28(7436):1315–1325

    Article  CAS  Google Scholar 

  15. Fazita MRN, Jayaraman K, Bhattacharyya D, Hossain MS, Haafiz MKM, Khalil HPSA (2015) Disposal options of bamboo fabric-reinforced poly(lactic) acid composites for sustainable packaging: biodegradability and recyclability. Polymers-Basel 7(1):1476–1496

    Article  CAS  Google Scholar 

  16. Mahmoodabadi M, Heydarpour E (2014) Sequestration of organic carbon influenced by the application of straw residue and farmyard manure in two different soils. Int Agrophys 28(2):169–176

    Article  CAS  Google Scholar 

  17. Bhattacharyya P, Bhaduri D, Adak T, Munda S, Pathak H (2019) Characterization of rice straw from major cultivars for best alternative industrial uses to cutoff the menace of straw burning. Ind Crop Prod 143:111919

    Article  CAS  Google Scholar 

  18. He L, Zhong Z, Yang H (2017) Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. J Integr Agr 16(3):704–712

    Article  CAS  Google Scholar 

  19. Yang F, Zhang X, Song L (2015) Controlled drug release and hydrolysis mechanism of polymer–magnetic nanoparticle composite. ACS Appl Mater Inter 7(18):9410–9419

    Article  CAS  Google Scholar 

  20. Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3(6):3468–3517

    Article  CAS  PubMed Central  Google Scholar 

  21. Kamiya H, Iijima M (2010) Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media. Technol Adv Mater 11(4):1–8

    Google Scholar 

  22. Hu Y, Kareem S, Dong H, **ong W, **e Y (2021) Cspbbr 3 @ SiO2 core–shell nanoparticle films for superhydrophobic coatings. ACS Appl Nano Mater 4(6):6306–6315

    Article  CAS  Google Scholar 

  23. Muntha ST, Kausar A, Siddiq M (2017) Functional polymeric membrane containing inorganic nanoparticle: recent advances and applications. Polym-Plast Technol 56(4):364–381

    Article  CAS  Google Scholar 

  24. Wang X, Li C, Peng H, Lin D, Kim H, Tong M (2014) Cotransport of multi-walled carbon nanotubes and titanium dioxide nanoparticles in saturated porous media. Environ Pollut 195:31–38

    Article  CAS  PubMed  Google Scholar 

  25. Fan W, Peng R, Li X, Ren J, Liu T, Wang X (2016) Effect of titanium dioxide nanoparticles on copper toxicity to daphnia magna in water: role of organic matter. Water Res 105:129–137

    Article  CAS  PubMed  Google Scholar 

  26. Feng Y, Yin J, Chen M, Liu X, Su B, Fei W (2014) Influence of interface on the electrical properties of polyimide/TiO2 composite films. IEEE T Dielect El In 21(4):1501–1508

    Article  CAS  Google Scholar 

  27. Zhang S, Han X, Tan Y (2017) Effects of hydrophilicity/lipophilicity of nano-TiO2 on surface tension of TiO2-water nanofluids. Chem Phys Lett 691:135–140

    Article  CAS  Google Scholar 

  28. Misaki T, Kishi J (2010) Effect of craze appearance on mechanical properties of polysulfone. J Polym Sci Part A-Polym Chem 17(7):1275–1277

    Google Scholar 

  29. Barros TPD, Cavalcante DGD, de Oliveira DF, Caluête RE, de Lima SJG (2019) Study of the surface properties of the epoxy/quasicrystal composite. J Mater Res Technol 8(1):590–598

    Article  CAS  Google Scholar 

  30. Zuo Y, Chen K, Li P, He X, Wu Y (2020) Effect of nano-SiO2 on the compatibility interface and properties of polylactic acid-grafted-bamboo fiber/polylactic acid composite. Int J Biol Macromol 157(1):177–186

    Article  CAS  PubMed  Google Scholar 

  31. Yin C, Sheng L, Yang Y, Liang G, **ng S, Zeng J (2018) Interface conjugation enhances the interface adhesion performance of carbon fiber-reinforced phthalonitrile composites by π–π stacking. RSC Adv 8(67):38210–38218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aqra F, Ayyad A (2014) Surface free energy of alkali and transition metal nanoparticles. Appl Surf Sci 308:308–313

    Article  CAS  Google Scholar 

  33. Zuo Y, Gu J, Cao J, Wei S, Tan H, Zhang Y (2015) Effect of starch/polylactic acid ratio on the interdependence of two-phase and the properties of composites. Wuhan Univ Technol 30(005):1108–1114

    Article  CAS  Google Scholar 

  34. Wu Y, Li Z, Ma W (2013) Pdt-s-t: a new polymer with optimized molecular conformation for controlled aggregation and π-π stacking and its application in efficient photovoltaic devices. Adv Mater 25(25):3449–3455

    Article  CAS  PubMed  Google Scholar 

  35. Mori T, Chin H, Kawashima K, Ngo HT, Cho NJ, Nakanishi W (2019) Dynamic control of intramolecular rotation by tuning the surrounding two-dimensional matrix field. ACS Nano 12(2):2410–2419

    Google Scholar 

  36. Lin B, Martin TB, Jayaraman A (2014) Decreasing polymer flexibility improves wetting and dispersion of polymer grafted particles in a chemically identical polymer matrix. ACS Macro Lett 3(7):628–632

    Article  CAS  PubMed  Google Scholar 

  37. Liao R, Yang B, Wei Y (2010) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104(1):310–317

    Article  CAS  Google Scholar 

  38. Wang M, Yan J, Cui H, Du S (2013) Low temperature preparation and characterization of TiO2 nanoparticles coated glass beads by heterogeneous nucleation method. Mater Charact 76:39–47

    Article  CAS  Google Scholar 

  39. Clement L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure. Chemosphere 90(3):1083–1090

    Article  CAS  PubMed  Google Scholar 

  40. Shan G, Li H, Mu Z (2012) Synthesis of cationic iridium(III) complexes with high quantum yield via enhancing the steric hindrance of ligands. J Organomet Chem 702:27–35

    Article  CAS  Google Scholar 

  41. Lasfargues M, Bell A, Ding Y (2016) In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications. J Nanopart Res 18(6):150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Research Project of Hunan Provincial Education Department, PR China (18A157) and Hunan Provincial Technical Innovation Platform and Talent Program in Science and Technology, PR China (2019RS2040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingfeng Zuo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, C., Chen, K., Li, P. et al. Nano-TiO2 Modified Wheat Straw/Polylactic Acid Composites Based on Synergistic Effect Between Interfacial Bridging and Heterogeneous Nucleation. J Polym Environ 30, 3021–3030 (2022). https://doi.org/10.1007/s10924-022-02414-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02414-4

Keywords

Navigation