Log in

A Facile Method for the Preparation of Hydrophilic-Hydrophobic Functional Thermo-pH Responsive Terpolymers Based on Poly (NIPAAm-co-DMAA-co-DMAMVA) and Post-polymerization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A new monomer has been synthesized on the basis of vanillin. This compound has the advantage of having a tertiary amine group, which makes it one of the pH-responsive monomers. Moreover, the active aldehyde group facilitates the additional reaction modification like the post-polymerization through Schiff reaction by reaction with primary amine compounds like amino acids. The name of the compound is 2-((dimethylamino)methyl)-4-formyl-6-methoxyphenyl acrylate (DMAMVA). The compounds have been evaluated by 1H, 13C NMR, and FTIR. A new series of polymers has been fabricated by free radical polymerization of N,N-dimethylacrylamide, and 5, 10, and 15 mol% of DMAMVA with N-isopropylacrylamide to produce the dual-responsive thermo-pH polymers. They were reacted with amino acid by post-polymerization according to Schiff base click reaction. All polymers have been investigated chemically in addition to physical characterizations e.g., molecular weight by GPC, glass transition temperature by DSC, chemical decomposition TGA, and morphological by SEM. The study was focused on the determination of phase transition temperatures and LCST of the polymer solution; it has been done using two methods one by UV–VIS-spectroscopy as turbidity test, while the other new technology by micro-DSC. More applications for these polymers will be applied in bio-separation and biotechnology in our future work.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tanaka M, Nakahata M, Linke P, Philipp L, Stefan K (2020) Stimuli-responsive hydrogels as a model of the dynamic cellular microenvironment. Polym J 52:861–870. https://doi.org/10.1038/s41428-020-0353-6

    Article  CAS  Google Scholar 

  2. Abdelaty MSA (2020) Influence of Vanillin Acrylate and 4-acetylphenyl acrylate hydrophobic functional monomers on phase separation of N-isopropylacrylamide environmental terpolymer: fabrication and characterization. Polym Bull 77:2905–2922. https://doi.org/10.1007/s00289-019-02890-0

    Article  CAS  Google Scholar 

  3. Abdelaty MSA (2020) The effect hydrophilic/hydrophobic interaction of 2 ((dimethylamino)methyl) 4 formyl 6 methoxyphenyl acrylate and 4 acetylphenyl acrylate monomers on the phase transition temperature of N isopropylacrylamide terpolymers. J Polym Environ 28:2584–2598. https://doi.org/10.1007/s10924-020-01790-z

    Article  CAS  Google Scholar 

  4. Abdelaty MSA (2020) The influence of vanillin acrylate derivative on the phase separation temperature of environmental photo-cross-linked N-isopropylacrylamide copolymer and hydrogel thin films. J Polym Environ. 28:2599–2615. https://doi.org/10.1007/s10924-020-01793-w

    Article  CAS  Google Scholar 

  5. Liang H, Qiang Z, Xue L, Michael JS (2019) Stimuli-responsive polymers for sensing and actuation. Mater Horiz 6:1774–1793. https://doi.org/10.1039/C9MH00490D

    Article  Google Scholar 

  6. Seidi F, Jenjob R, Crespy D (2018) Designing smart polymer conjugates for controlled release of payloads. Chem Rev 11:3965–4036. https://doi.org/10.1021/acs.chemrev.8b00006

    Article  CAS  Google Scholar 

  7. Chen J-K, Chang C-J (2014) Fabrication and applications of stimuli-responsive polymer films and patterns on surface. Materials 7:805–875. https://doi.org/10.3390/ma7020805

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nayeleh D, Changhe Z, Sarah SK, Angus PRJ, Georgina KS (2019) pH-responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun 40:e1800917. https://doi.org/10.1002/marc.201800917

    Article  CAS  Google Scholar 

  9. Mengle K, **nwen P, Hao C, Peiwen L, Bo P, Kai Z (2020) pH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery. RSC Adv 10:4860–4868

    Article  Google Scholar 

  10. Sijie X, Matthew JW (2020) Temperature-responsive supramolecular hydrogels. J Mater Chem B. https://doi.org/10.1039/D0TB01814G

    Article  Google Scholar 

  11. Liu Z, Zhang S, He B, Shoujuan W, Fangong K (2020) Temperature-responsive hydroxypropyl methylcellulose-N-isopropylacrylamide aerogels for drug delivery systems. Cellulose. https://doi.org/10.1007/s10570-020-03426-w

    Article  Google Scholar 

  12. Tao X, Ting L, Wei-Feng Z, Cheng-Sheng Z (2019) Ionic-strength responsive zwitterionic copolymer hydrogels with tunable swelling and adsorption behaviors. Langmuir 35:1146–1155

    Article  Google Scholar 

  13. Chikara K, Akihiro K, Kenji U, Toshikazu T, Masatoshi K, Kohzo I (2013) Pressure-responsive polymer membranes of slide-ring gels with movable cross-links. Adv Mater 6:4636–4640. https://doi.org/10.1002/adma.201301252

    Article  CAS  Google Scholar 

  14. Valentina M, Pierfrancesco C, Marta G, Bartosz T, Veronica A (2017) Light-responsive polymer micro- and nano-capsules. Polymers 9:1–19. https://doi.org/10.3390/polym9010008

    Article  CAS  Google Scholar 

  15. Sarah VW, Franka E-R, Dominic B, Didem D, Mathias U (2019) Glucose-responsive polymeric hydrogel materials: from a novel technique for the measurement of glucose binding towards swelling pressure sensor applications. ACS Appl Bio Mater 2:2464–2480

    Article  Google Scholar 

  16. Rostam HM, Leanne EF, Andrew LH, Laurence B et al (2020) Immune-instructive polymers control macrophage phenotype and modulate the foreign body response in vivo. Matter 2:1564–1581

    Article  Google Scholar 

  17. Qiao S, Wang H (2018) Temperature-responsive polymers: synthesis, properties, and biomedical applications. Nano Res 11:5400–5423. https://doi.org/10.1007/s12274-018-2121-x

    Article  CAS  Google Scholar 

  18. Abdelaty MSA (2018) Environmental functional photo-cross-linked hydrogel bilayer thin films from vanillin (part 2): temperature responsive layer A, functional, temperature and pH layer B. Polym Bull 11:4837–4858. https://doi.org/10.1007/s00289-018-2297-y

    Article  CAS  Google Scholar 

  19. Dirk S (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  Google Scholar 

  20. Castro-Hernández A, Cortez-Lemus NA (2019) Thermo/pH responsive star and linear copolymers containing a cholic acid-derived monomer, N-isopropylacrylamide and acrylic acid: synthesis and solution properties. Polymers 11:1859. https://doi.org/10.3390/polym11111859

    Article  CAS  PubMed Central  Google Scholar 

  21. Abdelaty MSA (2018) Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4 formyl-6-methoxyphenylacrylate) environmental functional copolymers: synthesis, characterizations, and grafting with amino acids. Biomolecules 8:138. https://doi.org/10.3390/biom8040138

    Article  CAS  PubMed Central  Google Scholar 

  22. Abdelaty MSA (2018) Environmental functional photo-cross-linked hydrogel bilayer thin films from vanillin. J Polym Environ 26:2243–2256. https://doi.org/10.1007/s10924-017-1126-y

    Article  CAS  Google Scholar 

  23. Abdelaty MSA (2018) Preparation and characterization of new environmental functional polymers based on vanillin and n-isopropylacrylamide for post polymerization. J Polym Environ 26:636–646. https://doi.org/10.1007/s10924-017-0960-2

    Article  CAS  Google Scholar 

  24. Weizhong Y, Wen G, Hui Z, Jie R (2013) Tunable thermo-, pH- and light-responsive copolymer micelles. Polym Chem 4:3934–3937. https://doi.org/10.1039/C3PY00478C

    Article  Google Scholar 

  25. Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62. https://doi.org/10.1007/3-540-56791-7-1

    Article  CAS  Google Scholar 

  26. Ying L, Hongmei C, Dian L, Wenxi W, Ye L, Shaobing Z (2015) pH-responsive shape memory poly(ethylene glycol)–poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl Mater Interfaces 23:12988–12999

    Google Scholar 

  27. Kocak G, Tuncer C, Bütün V (2017) pH-Responsive polymers. Polym Chem 8:144–176. https://doi.org/10.1039/C6PY01872F

    Article  CAS  Google Scholar 

  28. Thomas S, Linda S, Mark G, Stephen R (2016) The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter 12:2542. https://doi.org/10.1039/c5sm02693h

    Article  CAS  Google Scholar 

  29. Joko S, Alan F, Cahit E (2011) Synthesis and characterization of surface grafted poly(N-isopropylacrylamide) and poly(carboxylic acid)–iron particles via atom transfer radical polymerization for biomedical applications. J Appl Polym Sci 131:40176. https://doi.org/10.1002/app.40176

    Article  CAS  Google Scholar 

  30. Adhimoorthy P, Hsieh-Chih T, Ging-Ho H (2018) Formulation and evaluation of epinephrine-loaded poly (acrylic acid-co-N-isopropylacrylamide) gel for sustained ophthalmic drug delivery. React Funct Polym 124:40–47. https://doi.org/10.1016/j.reactfunctpolym.2018.01.001

    Article  CAS  Google Scholar 

  31. Panagiotis GF, Vincent L, Bruno A (2021) Synthesis, aqueous solution behavior and self-assembly of a dual pH/thermo-responsive fluorinated diblock terpolymer. Polym Chem 12:277–290. https://doi.org/10.1039/D0PY01515F

    Article  Google Scholar 

  32. Yang L, Zhaohui W, Qi W, Min L, Gang H, Baran DS, **ming G (2016) Non-covalent interactions in controlling pH-responsive behaviors of self-assembled nanosystems. Polym Chem 7:5949–5956. https://doi.org/10.1039/C6PY01104G

    Article  CAS  Google Scholar 

  33. Zefeng S, Ke W, Chengqiang G, Shuang W, Wangqing Z (2016) A new thermo-, pH-, and CO2-responsive homopolymer of poly[N-[2-(diethylamino)ethyl]acrylamide]: is the diethylamino group underestimated? Macromolecules 49:162–171

    Article  Google Scholar 

  34. Aditya J, Nandi D, Chester A, Marie M (2018) Study of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM) microgel particle induced deformations of tissue-mimicking phantom by ultrasound stimulation. Langmuir 34:1457–1465. https://doi.org/10.1021/acs.langmuir.7b02801

    Article  CAS  Google Scholar 

  35. Benrebouh A, Avoce D, Zhu XX (2001) Thermo- and pH-sensitive polymers containing cholic acid derivatives. Polymer 42:4031–4038. https://doi.org/10.1016/S0032-3861(00)00837-5

    Article  CAS  Google Scholar 

  36. Yunxiang S, Feng D (2020) Thermo- and pH-responsive fibrillization of squid suckerin A1H1 peptide. Nanoscale 12:6307–6317. https://doi.org/10.1039/C9NR09271D

    Article  Google Scholar 

  37. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670. https://doi.org/10.1016/j.addr.2006.09.020

    Article  CAS  PubMed  Google Scholar 

  38. Angela S, Mikhail S, Enrico F (2020) A thermo-responsive, self-assembling biointerface for on demand release of surface-immobilised proteins. Biomater Sci 8:2673. https://doi.org/10.1039/C9BM01957J

    Article  Google Scholar 

  39. Bijari Anil K, Rati Ranjan N (2019) supramolecular phenoxy-alkyl maleate-based hydrogels and their enzyme/pH-responsive curcumin release. New J Chem 43:5559. https://doi.org/10.1039/C8NJ05796F

    Article  Google Scholar 

  40. Mahmoud N, Mohaddeseh S, Siavash I, Rajender SV (2021) Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: a review. Carbohydr Polym 251:116986. https://doi.org/10.1016/j.carbpol.2020.116986

    Article  CAS  Google Scholar 

  41. Maxence F, Bernard B, Sylvain C (2015) Vanillin, a key-intermediate of biobased polymers. Eur Polym J 68:488–502. https://doi.org/10.1016/j.eurpolymj.2015.03.050

    Article  CAS  Google Scholar 

  42. Seong HG, Ryu J, Qian Y et al (2019) Novel hierarchically porous melamine-vanillin polymer: synthesis and application for the Pb(II) ion removal in wastewater. Macromol Res 27:882–887. https://doi.org/10.1007/s13233-019-7121-5

    Article  CAS  Google Scholar 

  43. Abdelaty MSA, Kuckling D (2016) Synthesis and characterization of new functional photo cross-linkable smart polymers containing vanillin derivatives. Gels 2:1–13. https://doi.org/10.3390/gels2010003

    Article  CAS  Google Scholar 

  44. Abdelaty MSA (2019) Layer by layer photo-cross-linked environmental functional hydrogel thin films based on vanillin: part 3. J Polym Environ 27:1212–1225. https://doi.org/10.1007/s10924-019-01421-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the University of Paderborn.

Funding

There is no funding to report for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momen S. A. Abdelaty.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaty, M.S.A. A Facile Method for the Preparation of Hydrophilic-Hydrophobic Functional Thermo-pH Responsive Terpolymers Based on Poly (NIPAAm-co-DMAA-co-DMAMVA) and Post-polymerization. J Polym Environ 29, 3227–3241 (2021). https://doi.org/10.1007/s10924-021-02117-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02117-2

Keywords

Navigation