Log in

The Soil Biodegradability of Structured Composites Based on Cellulose Cardboard and Blends of Polylactic Acid and Polyhydroxybutyrate

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The excessive use of plastics, in addition to the limitative capacities available for plastic waste disposal or recycle increased the interest in degradable polymers. Polylactic acid (PLA) and polyhydroxybutyrate (PHB) are among the most studied biobased polymers for packaging applications. However, their biodegradability in real environment is questionable. Therefore, the purpose of this study was to investigate the biodegradation behavior of PLA/PHB blend films and their sandwich-structured composites containing a cellulose paper interlayer, in natural soil environment, exposed to humidity and temperature conditions specific to different seasons. The study was conducted for 8 months and the biodegradation process was evaluated by measuring the morphological changes, weight loss and tensile properties of the samples. The weight loss data showed that materials were able to degrade under the action of soil microorganisms, water and heat. Moreover, the cellulose layer favored the water retention and enhanced the degradation. SEM images highlighted traces of erosion and biodegradation in the case of the buried samples and FTIR spectra revealed the scission of the ester bonds, which proved the degradation of the aliphatic polyesters. The XRD studies showed that the samples recovered from compost soil were more crystalline than those stored at room temperature, which indicates the degradation of the amorphous phase in the samples. In addition, DMA measurements showed a strong reinforcing effect of the cellulose interlayer on the PLA/PHB matrix. In conclusion, PLA/PHB blend is suitable for long packaging application, but the addition of a cellulose paper interlayer is beneficial to accelerate the decomposition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dhall RK, Alam MS (2020) Biodegradable packaging. Encyclopedia of renewable and sustainable materials. Elsevier, Amsterdam, p 26

    Chapter  Google Scholar 

  2. Wang Y, Duo T, Xu X, **ao Z, Xu A, Liu R, Jiang C, Lu J (2020) Eco-friendly high-performance poly(methyl methacrylate) film reinforced with methylcellulose. ACS Omega 5:24256–24261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Payne J, McKeown P, Jones M (2019) A circular economy approach to plastic waste. Polym Degrad Stab 165:170–181

    Article  CAS  Google Scholar 

  4. Kumar S, Singh P, Gupta SK, Ali J, Baboota S (2020) Biodegradable and recyclable packaging materials: a step towards a greener future. Encyclopedia of renewable and sustainable materials. Elsevier, Amsterdam, p 328

    Chapter  Google Scholar 

  5. Arrieta MP, Fortunati E, Dominici E, Rayón E, López J, Kenny JM (2014) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24

    Article  CAS  PubMed  Google Scholar 

  6. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14:71–78

    Article  CAS  Google Scholar 

  7. Panaitescu DM, Frone AN, Chiulan I (2016) Nanostructured biocomposites from aliphatic polyesters and bacterial cellulose. Ind Crop Prod 93:251–266

    Article  CAS  Google Scholar 

  8. Vasile C, Pamfil D, Râpă M, Darie-Niţă RN, Mitelut AC, Popa E, Popescu PA, Drăghici MC, Popa ME (2018) Study of the soil burial degradation of some PLA/CS biocomposites. Composites B 142:251–262

    Article  CAS  Google Scholar 

  9. Södergård A, Stolt M (2002) Properties of lactic acid-based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163

    Article  Google Scholar 

  10. Siakeng R, Jawaid M, Asim M, Siengchin S (2020) Accelerated weathering and soil burial effect on biodegradability colour and texture of coir/pineapple leaf fibres/PLA biocomposites. Polymers 12:458–472

    Article  CAS  PubMed Central  Google Scholar 

  11. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025

    Article  CAS  Google Scholar 

  12. Fukushima K, Tabuani D, Kamino G (2009) Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng C 29:1433–1441

    Article  CAS  Google Scholar 

  13. Pandey JK, Reddy KR, Kumar AP, Singh RP (2005) An overview on the degradability of polymer composites. Polym Degrad Stab 88:234–250

    Article  CAS  Google Scholar 

  14. Liua Y, Zhab Z, Yeb H, Lina X, Yan Y, Zhang Y (2019) Accelerated biodegradation of PLA/PHB-blended nonwovens by a microbial community. RSC Adv 9:10386–10394

    Article  Google Scholar 

  15. Panaitescu DM, Frone AN, Chiulan I (2017) Green composites with cellulose nanoreinforcements. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials. Wiley, Hoboken, p 299

  16. Abdelwahab MA, Flynn A, Chiou BS, Iman S, Orts W, Chiellini E (2012) Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym Degrad Stab 97:1822–1828

    Article  CAS  Google Scholar 

  17. Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79

    Article  Google Scholar 

  18. Arrieta MP, López J, Hernández A, Rayón E (2014) Ternary PLA-PHB- Limonene blends intended for biodegradable food packaging applications. Eur Polym J 50:255–270

    Article  CAS  Google Scholar 

  19. Navarro M, Ginebra MP, Planell JA, Barrias CC, Barbosa MA (2005) In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomater 1:411–419

    Article  CAS  PubMed  Google Scholar 

  20. Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251

    Article  CAS  PubMed  Google Scholar 

  21. Mehlika K, Alkan U (2019) Influence of time and room temperature on mechanical and thermal degradation of poly(lactic) acid. Therm Sci 23:383–390

    Article  Google Scholar 

  22. Müller RJ (2005) Biodegradability of polymers: regulations and methods for testing. In: Steinbüchel A (ed) Biopolymers. Willey, New York

    Google Scholar 

  23. Xu A, Wang Y, Gao J, Wang J (2019) Facile fabrication of a homogeneous cellulose/polylactic acid composite film with improved biocompatibility, biodegradability and mechanical properties. Green Chem 21:4449–4456

    Article  CAS  Google Scholar 

  24. Haider TP, Volker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed 58:50–62

    Article  CAS  Google Scholar 

  25. Bagheri AR, Laforsch C, Greiner A, Agarwal S (2017) Fate of so-called biodegradable polymers in seawater and freshwater. Glob Chall 1:1700048

    Article  PubMed  PubMed Central  Google Scholar 

  26. Satti SM, Shah AA, Marsh TL, Auras R (2018) Biodegradation of poly(lactic acid) in soil microcosms at ambient temperature: evaluation of natural attenuation, bio-augmentation and bio-stimulation. J Polym Environ 26:3848–3857

    Article  CAS  Google Scholar 

  27. Luo Y, Lin Z, Guo G (2019) Biodegradation assessment of poly (lactic acid) filled with functionalized titania nanoparticles (PLA/TiO2) under compost conditions. Nanoscale Res Lett 14:56

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sinha Ray S, Yamada K, Okamoto M, Ueda K (2003) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44:857–866

    Article  CAS  Google Scholar 

  29. Gois GDS, Andrade MFD, Garcia SMS, Vinhas GM, Santos ASF, Madeiros ES, Olivieara JE, Almeida YM (2017) Soil biodegradation of PLA/CNW nanocomposites modified with ethylene oxide derivatives. Mater Res 20:899–904

    Article  Google Scholar 

  30. Lertphirun K, Srikulkit K (2019) Properties of poly (lactic acid) filled with hydrophobic cellulose/SiO composites. Int J Polym Sci 2019:7835172

    Article  Google Scholar 

  31. Cyras VP, Soledad CM, Analia V (2009) Biocomposites based on renewable resource: acetylated and nonacetylated cellulose cardboard coated with polyhydroxybutyrate. Polymer 50:6274–6280

    Article  CAS  Google Scholar 

  32. Wei L, Liang S, McDonald AG (2015) Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue. Ind Crops Prod 69:91–103

    Article  CAS  Google Scholar 

  33. Fortunati E, Armentano I, Iannoni A, Barbale M, Zaccheo S, Scavone M, Visai L, Kenny JM (2012) New multifunctional poly(lactide acid) composites: mechanical, antibacterial, and degradation properties. J Appl Polym Sci 124:87–98

    Article  CAS  Google Scholar 

  34. Yaacob ND, Ismail H, Sam ST (2016) Soil burial of polylactic acid/paddy straw powder biocomposite. BioResources 11:1255–1269

    CAS  Google Scholar 

  35. Phetwarotai W, Potiyaraj P, Aht-Ong D (2013) Biodegradation of polylactide and gelatinized starch blend films under controlled soil burial conditions. J Polym Environ 21:95–107

    Article  CAS  Google Scholar 

  36. Woolnough CA, Yee LH, Charlton T, Foster LJR (2010) Environmental degradation and biofouling of ‘green’ plastics including short and medium chain length polyhydroxyalkanoates. Polym Int 59:658–667

    Article  CAS  Google Scholar 

  37. Rudnik E, Briassoulis D (2011) Degradation behavior of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Ind Crops Prod 33:648–658

    Article  CAS  Google Scholar 

  38. Rudnik E (2019) Biodegradability testing of compostable polymer materials under laboratory conditions. In: Rudnik E (ed) Compostable polymer materials, 2nd edn. Elsevier, Boston, pp 163–237

    Google Scholar 

  39. Frone AN, Panaitescu DM, Chiulan I, Gabor AR, Nicolae CA, Oprea M, Ghiurea M, Gavrilescu D, Puitel AC (2019) Thermal and mechanical behavior of biodegradable polyester films containing cellulose nanofibers. J Therm Anal Calorim 138:2387–2398

    Article  CAS  Google Scholar 

  40. Panaitescu DM, Nicolae CA, Frone AN, Chiulan I, Stanescu PO, Draghici C, Iorga M, Mihailescu M (2017) Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. J Appl Polym Sci 134:44810

    Article  Google Scholar 

  41. Hong SG, Hsu HW, Ye MT (2013) Thermal properties and applications of low molecular weight polyhydroxybutyrate. J Therm Anal Calorim 111:1243–1250

    Article  CAS  Google Scholar 

  42. Vey E, Rodger C, Booth J, Claybourn M, Miller AF, Saiani A (2011) Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies. Polym Degrad Stab 96:1882–1889

    Article  CAS  Google Scholar 

  43. Rapa M, Nita RND, Vasile C (2017) Influence of plasticizers over some physico-chemical properties of PLA. Mater Plast 54:73–78

    Article  Google Scholar 

  44. Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94:1646–1655

    Article  CAS  Google Scholar 

  45. Guo L, Sato H, Hashimoto T, Ozaki Y (2010) FTIR study on hydrogen-bonding interactions in biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(4-vinylphenol). Macromolecules 43:3897–3902

    Article  CAS  Google Scholar 

  46. Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014) PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab 107:139–149

    Article  CAS  Google Scholar 

  47. Khabbaz F, Karlsson S, Albertsson AC (2000) PY-GC/MS an effective technique to characterizing of degradation mechanism of poly (L-lactide) in the different environment. J Appl Polym Sci 78:2369–3237

    Article  CAS  Google Scholar 

  48. Chiulan I, Panaitescu DM, Frone AN, Teodorescu M, Nicolae CA, Căşărică A, Tofan V, Sălăgeanu A (2016) Biocompatible polyhydroxyalkanoates/bacterial cellulose composites: preparation, characterization, and in vitro evaluation. J Biomed Mater Res A 104:2576–2584

    Article  CAS  PubMed  Google Scholar 

  49. Panaitescu DM, Frone AN, Chiulan I, Gabor RA, Spătaru IC, Căşărică A (2017) Biocomposites from polylactic acid and bacterial cellulose nanofibers obtained by mechanical treatment. BioResources 12:662–672

    CAS  Google Scholar 

  50. Guo P, Wang F, Duo T, **ao Z, Xu A, Liu R, Jiang C (2020) Facile fabrication of methylcellulose/PLA membrane with improved properties. Coatings 10(5):499

    Article  CAS  Google Scholar 

  51. Altaee N, El-Hiti GA, Fahdil A, Sudesh K, Yousif A (2016) Biodegradation of different formulations of polyhydroxybutyrate films in soil. SpringerPlus 5:762–762

    Article  PubMed  PubMed Central  Google Scholar 

  52. Radha KV, Saranya S (2019) Polyhydroxybutyrate-based nanoparticles for controlled drug delivery. In: Munmaya KM (ed) Applications of encapsulation and controlled release. CRC Press, Boca Raton

    Google Scholar 

  53. Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Composites A 42:1509–1514

    Article  Google Scholar 

  54. Monticelli O, Bocchini S, Gardella L, Cavallo D, Cebe P, Germelli G (2013) Impact of synthetic talc on PLLA electrospun fibers. Eur Polym J 49:2572–2583

    Article  CAS  Google Scholar 

  55. Stloukal P, Pekařová S, Kalendova A, Mattausch H, Laske S, Holzer C, Chitu L, Bodner S, Maier G, Slouf M, Koutny M (2015) Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process. Waste Manage 42:31–40

    Article  CAS  Google Scholar 

  56. Sun C, Huang Z, Liu Y, Li C, Tan H, Zhang Y (2020) The effect of carbodiimide on the stability of wood fiber/poly(lactic acid) composites during soil degradation. J Polym Environ 28:1315–1325

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Research, Core Program, Contract No. 23N/2019, PN.19.23.02.01.07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioana Chiulan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radu, ER., Panaitescu, D.M., Nicolae, CA. et al. The Soil Biodegradability of Structured Composites Based on Cellulose Cardboard and Blends of Polylactic Acid and Polyhydroxybutyrate. J Polym Environ 29, 2310–2320 (2021). https://doi.org/10.1007/s10924-020-02017-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02017-x

Keywords

Navigation