Log in

Development of Poly(lactic acid) Nanocomposites Reinforced with Hydrophobized Bacterial Cellulose

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(lactic acid)/bacterial cellulose nanocomposites were prepared by solvent casting. Aiming to reduce the incompatibility between polar bacterial cellulose (BC) and the nonpolar poly(lactic acid) (PLA) matrix which induces filler aggregation and poor reinforcement dispersion, BC was acetylated by the use of a non-conventional route catalyzed by citric acid. The derivatized BC (AcBC) was incorporated into de PLA matrix at varying filler loadings, and optical, morphological, structural, thermal, tensile and barrier (water vapor) properties of PLA/AcBC in comparison with PLA/BC were evaluated. Noticeable changes in the nanocomposite properties were ascribed to the success of the route proposed to surface hydrophobize BC, which significantly improved its dispersibility within the PLA matrix and the matrix-filler interaction. By the way, the variation of filler loading allowed attaining remarkable increases in the nanocomposite films stiffness without significant reductions in tensile strength and water vapor permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Scaffaro R, Maio A, Sutera F, Gulino EF, Morreale M (2019) Polymers 11:651

    CAS  PubMed Central  Google Scholar 

  2. Avérous L (2004) J Macromol Sci C 44:231

    Google Scholar 

  3. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci F 9:552

    CAS  Google Scholar 

  4. Avérous L (2008) In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, vol 1. Elsevier, Amsterdam, p 433

    Google Scholar 

  5. Petersen N, Gatenholm P (2011) Appl Microbiol Biot 91:1277

    CAS  Google Scholar 

  6. Panaitescu DM, Frone AN, Chiulan I (2016) Ind Crop Prod 93:251

    CAS  Google Scholar 

  7. John MJ, Thomas S (2008) Carbohydr Polym 71:343

    CAS  Google Scholar 

  8. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2015) Composites A 83:2

    Google Scholar 

  9. Kian LK, Saba N, Jawaid M, Sultan MTH (2019) Int J Biol Macromol 121:1314

    CAS  PubMed  Google Scholar 

  10. Nechyporchuk O, Belgacem MN, Bras J (2016) Ind Crop Prod 93:2

    CAS  Google Scholar 

  11. Ferreira FV, Mariano M, Rabel SC, Gouveia RF, Lona LMF (2018) Appl Surf Sci 436:1113

    CAS  Google Scholar 

  12. Pinheiro IF, Ferreira FV, Alves GF, Rodolfo A Jr, Morales AR, Mei LHI (2019) J Polym Environ 27:757

    CAS  Google Scholar 

  13. Iguchi M, Yamanaka S, Budhiono A (2000) J Mater Sci 35:261

    CAS  Google Scholar 

  14. Brown EE, Laborie MPG (2007) Biomacromol 8:3074

    CAS  Google Scholar 

  15. Berglund LA, Peijs T (2010) MRS Bull 35:201

    CAS  Google Scholar 

  16. Isogai A, Saito T, Fukuzumi H (2011) Nanoscale 3:71

    CAS  PubMed  Google Scholar 

  17. Tardy BL, Yokota S, Ago M, **ang W, Kondo T, Bordes R, Rojas OJ (2017) Curr Opin Colloid Int Sci 29:57

    CAS  Google Scholar 

  18. Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) Biomacromol 12:2456

    CAS  Google Scholar 

  19. Littunen K, Hippi U, Johansson LS, Österberg M, Tammelin T, Laine J, Seppälä J (2011) Carbohydr Polym 84:1039

    CAS  Google Scholar 

  20. Lonnberg H, Larsson K, Lindström T, Hult A, Malmström E (2011) ACS Appl Mater Interfaces 3:1426

    PubMed  Google Scholar 

  21. Moon RJ, Martini A, Nairn J, Simonsenf J, Youngblood J (2011) Chem Soc Rev 40:3941

    CAS  PubMed  Google Scholar 

  22. Johansson LS, Tammelin T, Campbell JM, Setälä H, Österberg M (2011) Soft Matter 7:10917

    CAS  Google Scholar 

  23. Missoum K, Belgacem MN, Bras J (2013) Materials 6:1745

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Habibi Y (2014) Chem Soc Rev 43:1519

    CAS  PubMed  Google Scholar 

  25. Kim DY, Nishiyama Y, Kuga S (2002) Cellulose 9:361

    CAS  Google Scholar 

  26. Nogi M, Abe K, Handa K, Nakatsubo F, Ifuku S, Yano H (2006) Appl Phys Lett 89:233123

    Google Scholar 

  27. Lee KY, Quero F, Blaker JJ, Hill CAS, Eichhorn SJ, Bismarck A (2011) Cellulose 18:595

    CAS  Google Scholar 

  28. Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Carbohydr Polym 83:1834

    CAS  Google Scholar 

  29. Tomé LC, Pinto RJB, Trovatti E, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2011) Green Chem 13:419

    Google Scholar 

  30. Cunha AG, Zhou Q, Larsson PT, Berglund LA (2014) Cellulose 21:2773

    CAS  Google Scholar 

  31. Ávila Ramírez JA, Gómez Hoyos C, Arroyo S, Cerrutti P, Foresti ML (2016) Carbohydr Polym 153:686

    PubMed  Google Scholar 

  32. Ávila Ramírez JA, Gómez Hoyos C, Arroyo S, Cerrutti P, Foresti ML (2016) Curr Organocatal 3:161

    Google Scholar 

  33. Ávila Ramírez JA, Cerrutti P, Bernal C, Errea MI, Foresti ML (2018) J Polym Environ 27:510

    Google Scholar 

  34. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Polym Degrad Stab 97:2027

    CAS  Google Scholar 

  35. Cerrutti P, Roldán P, Martínez García R, Galvagno MA, Vázquez A, Foresti ML (2016) J Appl Polym Sci 133:43109

    Google Scholar 

  36. Hestrin A, Schramm M (1954) Biochem J 58:345

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ávila Ramírez JA, Juan Suriano C, Cerrutti P, Foresti ML (2014) Carbohydr Polym 114:416

    PubMed  Google Scholar 

  38. Ilharco LM, Gracia RR, da Silva JL, Ferreira LFV (1997) Langmuir 13:4126

    CAS  Google Scholar 

  39. Segal L, Creely JJ, Martin AE, Conrad CM (1959) Text Res J 29:786

    CAS  Google Scholar 

  40. Karim MN, Afroj S, Rigout M, Yeates SG, Carr C (2015) J Mater Sci 50:4576

    CAS  Google Scholar 

  41. Zhao LL, Su JJ, Han J, Zhanga B, Oua L (2017) RSC Adv 7:23065

    CAS  Google Scholar 

  42. Oksman K, Mathew AP (2014) In: Oksman K, Mathew AP, Bismarck A, Rojas O, Mohini S (eds) Handbook of green materials: processing technologies, properties and applications, vol 2. World Scientific, Singapore, p 53

    Google Scholar 

  43. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Biomacromol 11:454

    CAS  Google Scholar 

  44. Kim Y, Jung R, Kim HS, ** HY (2009) Curr Appl Phys 9:S69

    Google Scholar 

  45. Zhang X, Li W, Ye B, Lin Z, Rong J (2011) J Thermoplast Compos Mater 26:346

    Google Scholar 

  46. Mathew AP, Oksman K, Sain M (2005) J Appl Polym Sci 97:2014

    CAS  Google Scholar 

  47. Wang Y, Funari SS, Mano JF (2006) Macromol Chem Phys 207:1262

    CAS  Google Scholar 

  48. Tábi T, Sajó IE, Szabó F, Luyt AS, Kovács JG (2010) Express Polym Lett 4:659

    Google Scholar 

  49. Ambrosio-Martın J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Cellulose 22:1201

    Google Scholar 

  50. Blaker JJ, Lee KY, Walters M, Drouet M, Bismarck A (2014) React Funct Polym 85:185

    CAS  Google Scholar 

  51. Fortunati E, Luzia F, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Ind Crop Prod 67:439

    CAS  Google Scholar 

  52. Mofokeng JP, Luyt AS, Tábi T, Kovács J (2011) J Thermoplast Compos Mater 25:927

    Google Scholar 

  53. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Compos Sci Technol 70:1742

    CAS  Google Scholar 

  54. Ferreira FV, Dufresne A, Pinheiro IF, Souza DHS, Gouveia RF, Mei LHI, Lona LMF (2018) Eur Polym J 108:274

    CAS  Google Scholar 

  55. Bulota M, Kreitsmann K, Hughes M, Paltakari J (2012) J Appl Polym Sci 126:E448

    CAS  Google Scholar 

  56. Lee KY, Blaker JJ, Bismarck A (2009) Compos Sci Technol 69:2724

    CAS  Google Scholar 

  57. Pérez E, Famá L, Pardo SG, Abad MJ, Bernal C (2012) Compos Part B 43:2795

    Google Scholar 

  58. Pukánszky B, Turcsányi B, Tϋdós F (1988) In: Ishida H (ed) Interfaces in polymer, ceramic and metal matrix composites. Elsevier, New York, p 467

    Google Scholar 

  59. Csikós A, Faludi G, Domján A, Renner K, Moczó J, Pukánszky B (2015) Eur Polym J 68:592

    Google Scholar 

  60. Demién Z, Pukánszky B, Nagy J (1998) Composites A 29:33

    Google Scholar 

  61. Csizmadia R, Faludi G, Renner K, Móczó J, Pukánszky B (2013) Composites A 53:46

    CAS  Google Scholar 

  62. Faludi G, Dora G, Imre B, Renner K, Moczó J, Pukánszky B (2014) J Appl Polym Sci 131:39902

    Google Scholar 

  63. Kiss A, Fekete E, Pukánszky B (2007) Compos Sci Technol 67:1574

    CAS  Google Scholar 

  64. Gårdebjer S, Larsson A, Löfgren C, Ström A (2014) J Appl Polym Sci 132:41219

    Google Scholar 

  65. Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z (2014) Polym Test 35:73

    CAS  Google Scholar 

  66. Almasi H, Ghanbarzadeh B, Dehghannya J, Entezami AA, Asl AK (2015) Food Packag Shelf Life 5:21

    Google Scholar 

  67. Song Z, **ao H, Zhao Y (2014) Carbohydr Polym 111:442

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- PIP 11220150100660CO), University of Buenos Aires (UBACyT 20020170100696BA) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 0843 2016 – PRESTAMO BID) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Laura Foresti.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila Ramírez, J.A., Bovi, J., Bernal, C. et al. Development of Poly(lactic acid) Nanocomposites Reinforced with Hydrophobized Bacterial Cellulose. J Polym Environ 28, 61–73 (2020). https://doi.org/10.1007/s10924-019-01581-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01581-1

Keywords

Navigation