Log in

Preparation, Thermal Properties and Thermal Reliability of Form-Stable Paraffin/Polypropylene Composite for Thermal Energy Storage

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study is focused on the preparation, characterization, and determination of thermal properties and thermal reliability of paraffin/polypropylene (PP) composite as a novel form-stable phase change material (PCM) for thermal energy storage applications. In the composite, paraffin acts as a PCM when PP is operated as supporting material. The composites prepared at different mass fractions of paraffin (50, 60, 70, 80, and 90 w/w%) by solution casting method were subjected to leakage test by heating the composites over the melting temperature of the PCM. The paraffin/PP composite (70/30 w/w%) is found as the maximum paraffin containing composite and was characterized using Fourier transform infrared spectroscopy, optic microscopy, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA) techniques. DSC analysis indicated that the form-stable paraffin/PP composite melts at 44.77–45.52 °C and crystallizes at 53.55–54.80 °C. It has latent heats of 136.16 and −136.59 J/g for melting and crystallization, respectively. These thermal properties make it potential PCM for latent heat thermal energy storage (LHTES) purposes such as solar space heating applications. Accelerated thermal cycling tests indicated that the form-stable PCM had good thermal reliability. TGA also showed that the form-stable PCM degrades in two distinguishable steps and had good chemical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abhat A (1983) Sol Energy 30(4):313–332

    Article  CAS  Google Scholar 

  2. Dinçer I, Rosen MA (2002) Thermal energy storage. Systems and applications. Wiley, New York

    Google Scholar 

  3. Zalba B, Marín JM, Cabeza LF, Mehling H (2003) Appl Therm Eng 23:251–283

    Article  CAS  Google Scholar 

  4. Alkan C, Kaya K, Sarı A (2008) Mater Lett 62:1122–1125

    Article  CAS  Google Scholar 

  5. Kenisarin M, Mahkamov K (2007) Renew Sust Energ Rev 11(9):1913–1965

    Article  CAS  Google Scholar 

  6. Hadjieva M, Kanev ST, Argirov J (1992) Sol Energy Storage Mater Sol Cells 27:181–187

    Article  Google Scholar 

  7. Himran S, Suwono A, Mansoori GA (1994) Energy Sour 16:117–128

    Article  CAS  Google Scholar 

  8. Alkan C (2006) Thermochim Acta 451(1–2):126–130

    Article  CAS  Google Scholar 

  9. Ozonur Y, Mazman M, Paksoy HO, Evliya H (2005) Int J Energy Res 30(10):741–749

    Article  Google Scholar 

  10. Alkan C, Sari A, Uzun O (2006) AIChE J 52(9):3310–3314

    Article  CAS  Google Scholar 

  11. Pielichowski K, Flejtuch K (2005) Polym Adv Technol 16(2–3):127–132

    Article  CAS  Google Scholar 

  12. Pielichowski K, Flejtuch K (2003) J Appl Polym Sci 90:861–870

    Article  CAS  Google Scholar 

  13. Hong Y, **n-Shi G (2000) Sol Energy Storage Mater Sol Cells 64:37–44

    Article  CAS  Google Scholar 

  14. Inaba H, Tu P (1997) Heat Mass Transf 32:307–312

    Article  CAS  Google Scholar 

  15. Sarı A (2004) Energy Convers Manage 45:2033–2042

    Article  Google Scholar 

  16. **ao M, Feng B, Gong K (2002) Energy Convers Manage 43:103–108

    Article  CAS  Google Scholar 

  17. Liu X, Liu H, Wang S, Zhang L, Cheng H (2006) Energy Convers Manage 47:2515–2522

    Article  CAS  Google Scholar 

  18. Alkan C, Sarı A (2008) Sol Energy 82:118–124

    Article  CAS  Google Scholar 

  19. Sarı A, Alkan C, Uzun O, Kölemen U (2006) J Appl Polym Sci 101:1402–1406

    Article  Google Scholar 

  20. Alkan C, Sarı A, Karaipekli A, Önal A (2008) Energy Convers Manage 49:373–380

    Article  Google Scholar 

  21. Ulrich H (1993) Introduction to industrial polymers, 2nd edn. Hanser, Munich

    Google Scholar 

  22. Sarı A, Karaipekli A (2008) Mater Chem Phys 109:459–464

    Article  Google Scholar 

  23. Krupa I, Luyt AS (2001) Thermochim Acta 372:137–141

    Article  CAS  Google Scholar 

  24. Krupa I, Miková G, Luyt AS (2007) Eur Polym J 43:895–907

    Article  CAS  Google Scholar 

  25. Genovese A, Amarasinghe G, Glewis M, Mainwaring D, Shanks RA (2006) Thermochim Acta 443(2):235–244

    Article  CAS  Google Scholar 

  26. Tiwari GB, Sriwastava SP, Pandey SP, Purohit RC, Saxena AK, Goyal SK (1997) Petrol Sci Technol 15(3–4):335–346

    CAS  Google Scholar 

  27. Herranz G, Levenfeld B, Várez A, Torralba JM (2005) Powder Metall 48(2):134–138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the financial support (Project No. 2003 K120510) by the Turkish State Planning Organization. Authors also thank Dr Ahmet Karadağ for TGA analysis and Dr Ibrahim Türkekul for OM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemil Alkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkan, C., Kaya, K. & Sarı, A. Preparation, Thermal Properties and Thermal Reliability of Form-Stable Paraffin/Polypropylene Composite for Thermal Energy Storage. J Polym Environ 17, 254–258 (2009). https://doi.org/10.1007/s10924-009-0146-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-009-0146-7

Keywords

Navigation