Log in

A Correlation-Based Approach to Corrosion Detection with Lamb Wave Mode Cutoff

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Time of flight and amplitude attenuation are commonly used features for corrosion detection in Lamb wave testing, but the sensitivity is limited by their individual application scenarios. The mode cutoff of Lamb waves is available and sensitive to determine and describe corrosion patches. In this paper, an approach is proposed by detecting envelope variations of a particular higher order mode after propagating through the inspected area. The excitation frequency is selected slightly above its cutoff frequency, leading to a preferable sensitivity for corrosion detection. After dispersion compensation and windowing, envelope difference coefficient is established as a correlation-based indicator to describe these variations. Such a technique could be used to scan multiple paths and provide a comprehensive corrosion map. Experiments are performed on a corroded aluminum plate. The interference from scattered components has also been discussed in detail. Based on our proposed indicator, the probability reconstruction algorithm provides an acceptable diagnosis map. In addition, the effectiveness of our indicator under different corrosion widths and depths is verified by a series of finite element simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Achenbach, J.D.: Quantitative nondestructive evaluation. Int. J. Solids Struct. 37(1–2), 13–27 (2000). https://doi.org/10.1016/s0020-7683(99)00074-8

    Article  MATH  Google Scholar 

  2. Drinkwater, B.W., Wilcox, P.D.: Ultrasonic arrays for non-destructive evaluation: a review. NDT E Int. 39(7), 525–541 (2006). https://doi.org/10.1016/j.ndteint.2006.03.006

    Article  Google Scholar 

  3. Krautkrämer, J., Krautkrämer, H.: Ultrasonic Testing of Materials. Springer, Berlin (1990)

    Book  Google Scholar 

  4. Auld, B.A.: Acoustic Fields and Waves in Solids. Wiley, New York (1990)

    Google Scholar 

  5. Hutchins, D.A., Jansen, D.P., Edwards, C.: Lamb-wave tomography using non-contact transduction. Ultrasonics 31(2), 97–103 (1993). https://doi.org/10.1016/0041-624x(93)90039-3

    Article  Google Scholar 

  6. Pei, J., Yousuf, M.I., Degertekin, F.L., Honein, B.V., Khuri-Yakub, B.T.: Lamb wave tomography and its application in pipe erosion/corrosion monitoring. Res. Nondestruct. Eval. 8(4), 189–197 (1996). https://doi.org/10.1007/BF02433949

    Article  Google Scholar 

  7. Malyarenko, E.V., Hinders, M.K.: Fan beam and double crosshole Lamb wave tomography for map** flaws in aging aircraft structures. J. Acoust. Soc. Am. 108(4), 1631–1639 (2000). https://doi.org/10.1121/1.1289663

    Article  Google Scholar 

  8. Leonard, K.R., Malyarenko, E.V., Hinders, M.K.: Ultrasonic Lamb wave tomography. Inverse Probl. 18(6), 1795–1808 (2002). https://doi.org/10.1088/0266-5611/18/6/322

    Article  MathSciNet  MATH  Google Scholar 

  9. Belanger, P., Cawley, P.: Feasibility of low frequency straight-ray guided wave tomography. NDT E Int. 42(2), 113–119 (2009). https://doi.org/10.1016/j.ndteint.2008.10.006

    Article  Google Scholar 

  10. Huthwaite, P.: Improving accuracy through density correction in guided wave tomography. Proc. R. Soc. Lond. A 472(2186), 20150832 (2016). https://doi.org/10.1098/rspa.2015.0832

    Article  MathSciNet  Google Scholar 

  11. Nagata Y, Huang J, Achenbach JD, Krishnaswamy S (1995) Lamb wave tomography using laser-based ultrasonics. In: Review of Progress in Quantitative Nondestructive Evaluation, vol. 14, pp. 561–568. Springer, Boston. https://doi.org/10.1007/978-1-4615-1987-4_68

    Chapter  Google Scholar 

  12. Leonard, K.R., Hinders, M.K.: Lamb wave tomography of pipe-like structures. Ultrasonics 43(7), 574–583 (2005). https://doi.org/10.1016/j.ultras.2004.12.006

    Article  Google Scholar 

  13. Ho, K.S., Billson, D.R., Hutchins, D.A.: Ultrasonic Lamb wave tomography using scanned EMATs and wavelet processing. Nondestruct. Test. Eval. 22(1), 19–34 (2007). https://doi.org/10.1080/10589750701327890

    Article  Google Scholar 

  14. Wright, W., Hutchins, D., Jansen, D., Schindel, D.: Air-coupled Lamb wave tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(1), 53–59 (1997). https://doi.org/10.1109/58.585190

    Article  Google Scholar 

  15. Gao H, Shi Y, Rose JL (2005) Guided wave tomography on an aircraft wing with leave in place sensors. In: Review of Progress in Quantitative Nondestructive Evaluation, vol. 24, pp. 1788–1794. American Institute of Physics, New York. https://doi.org/10.1063/1.1916887

  16. Zhao, X., Gao, H., Zhang, G., Ayhan, B., Yan, F., Kwan, C., Rose, J.L.: Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring. Smart Mater. Struct. 16(4), 1208–1217 (2007). https://doi.org/10.1088/0964-1726/16/4/032

    Article  Google Scholar 

  17. Wang, D., Ye, L., Su, Z., Lu, Y., Li, F., Meng, G.: Probabilistic damage identification based on correlation analysis using guided wave signals in aluminum plates. Struct. Health Monit. 9(2), 133–144 (2010). https://doi.org/10.1177/1475921709352145

    Article  Google Scholar 

  18. Wang, D., Ye, L., Lu, Y., Li, F.: A damage diagnostic imaging algorithm based on the quantitative comparison of Lamb wave signals. Smart Mater. Struct. 19(6), 065008 (2010). https://doi.org/10.1088/0964-1726/19/6/065008

    Article  Google Scholar 

  19. Zeng, L., Lin, J., Hua, J., Shi, W.: Interference resisting design for guided wave tomography. Smart Mater. Struct. 22(5), 055017 (2013). https://doi.org/10.1088/0964-1726/22/5/055017

    Article  Google Scholar 

  20. Zhu, W., Rose, J.L., Barshinger, J.N., Agarwala, V.S.: Ultrasonic guided wave NDT for hidden corrosion detection. Res. Nondestruct. Eval. 10(4), 205–225 (1998). https://doi.org/10.1080/09349849809409629

    Article  Google Scholar 

  21. Rose JL, Barshinger J (1998) Using ultrasonic guided wave mode cutoff for corrosion detection and classification. In: Proceedings of the IEEE Ultrasonics Symposium, vol. 1, pp. 851–854. IEEE, New York. https://doi.org/10.1109/ultsym.1998.762277

  22. Tuzzeo, D., Scalea, F.L.D.: Noncontact air-coupled guided wave ultrasonics for detection of thinning defects in aluminum plates. Res. Nondestruct. Eval. 13(1), 61–77 (2001). https://doi.org/10.1080/09349840108968178

    Article  Google Scholar 

  23. Silva, M.Z., Gouyon, R., Lepoutre, F.: Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis. Ultrasonics 41(4), 301–305 (2003). https://doi.org/10.1016/s0041-624x(02)00455-9

    Article  Google Scholar 

  24. Belanger, P.: High order shear horizontal modes for minimum remnant thickness. Ultrasonics 54(4), 1078–1087 (2014). https://doi.org/10.1016/j.ultras.2013.12.013

    Article  Google Scholar 

  25. Rose, J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  26. Holland, S.D., Chimenti, D.E.: Air-coupled acoustic imaging with zero-group-velocity Lamb modes. Appl. Phys. Lett. 83(13), 2704–2706 (2003). https://doi.org/10.1063/1.1613046

    Article  Google Scholar 

  27. Liu, L., Yuan, F.G.: A linear map** technique for dispersion removal of Lamb waves. Struct. Health Monit. 9(1), 75–86 (2009). https://doi.org/10.1177/1475921709341012

    Article  Google Scholar 

  28. Michaels, J.E., Lee, S.J., Croxford, A.J., Wilcox, P.D.: Chirp excitation of ultrasonic guided waves. Ultrasonics 53(1), 265–270 (2013). https://doi.org/10.1016/j.ultras.2012.06.010

    Article  Google Scholar 

  29. Zhou, C., Su, Z., Cheng, L.: Probability-based diagnostic imaging using hybrid features extracted from ultrasonic Lamb wave signals. Smart Mater. Struct. 20(12), 125005 (2011). https://doi.org/10.1088/0964-1726/20/12/125005

    Article  Google Scholar 

  30. Huang, L., Zeng, L., Lin, J.: Baseline-free damage detection in composite plates based on the reciprocity principle. Smart Mater. Struct. 27(1), 015026 (2018). https://doi.org/10.1088/1361-665x/aa9cc1

    Article  Google Scholar 

  31. Pearce, J., Mittleman, D.: Defining the Fresnel zone for broadband radiation. Phys. Rev. E 66(5), 056602 (2002). https://doi.org/10.1103/physreve.66.056602

    Article  Google Scholar 

  32. Pavlakovic BN (1998) Leaky guided ultrasonic waves in NDT. Ph.D. thesis, Imperial College London

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Grant Nos. 51875435, 51421004), and the China Postdoctoral Science Foundation (Grant No. 2018M643627), which are highly appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Zeng, L., Lin, J. et al. A Correlation-Based Approach to Corrosion Detection with Lamb Wave Mode Cutoff. J Nondestruct Eval 38, 87 (2019). https://doi.org/10.1007/s10921-019-0629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-019-0629-y

Keywords

Navigation