Log in

eXtended Hybridizable Discontinous Galerkin (X-HDG) for Void Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A strategy for the Hybridizable Discontinous Galerkin (HDG) solution of problems with voids, inclusions or free surfaces is proposed. It is based on an eXtended Finite Element philosophy with a level-set description of interfaces. Thus, the computational mesh is not required to fit the interface (i.e. the boundary), simplifying and reducing the cost of mesh generation and, in particular, avoiding continuous remeshing for evolving interfaces. Differently to previous proposals for HDG solution with non-fitting meshes, here the computational mesh covers the domain, avoiding extrapolations, and ensuring the robustness of the method. The local problem at elements not cut by the interface, and the global problem, are discretized as usual in HDG. A modified local problem is considered at elements cut by the interface. At every cut element, an auxiliary trace variable on the boundary is introduced, which is eliminated afterwards using the boundary conditions on the interface, kee** the original unknowns and the structure of the local problem solver. An efficient and robust methodology for numerical integration in cut elements, in the context of high-order approximations, is also proposed. Numerical experiments demonstrate how X-HDG keeps the optimal convergence, superconvergence, and accuracy of HDG with no need of adapting the computational mesh to the interface boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Cheng, K.W., Fries, T.P.: Higher-order XFEM for curved strong and weak discontinuities. Int. J. Numer. Methods Eng. 82(5), 564–590 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Ciarlet, P.G., Raviart, P.A.: Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Eng. 1(2), 217–249 (1972)

  3. Cockburn, B.: Discontinuous Galerkin methods for computational fluid dynamics. In: Stein, E., De Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3 (Fluids), chap. 4. Wiley, New York (2004)

  4. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2008)

    Article  MATH  Google Scholar 

  5. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80(274), 723–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81(279), 1327–1353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Qiu, W., Solano, M.: A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity. Math. Comput. 83(286), 665–699 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Solano, M.: Solving convection–diffusion problems on curved domains by extensions from subdomains. J. Sci. Comput. 59(2), 512–543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dreau, K., Chevaugeon, N., Moës, N.: Studied X-FEM enrichment to handle material interfaces with higher order finite element. Comput. Methods Appl. Mech. Eng. 199(29–32), 1922–1936 (2010)

    Article  MATH  Google Scholar 

  11. Fries, T.P., Belytschko, T.: The extended\(/\)generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin p-adaptivity for wave propagation problems. Int. J. Numer. Methods Fluids 72(12), 1244–1262 (2013)

    Article  Google Scholar 

  13. Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations. Comput. Fluids 98, 196–208 (2014)

    Article  MathSciNet  Google Scholar 

  14. Giorgiani, G., Modesto, D., Fernández-Méndez, S., Huerta, A.: High-order continuous and discontinuous Galerkin methods for wave problems. Int. J. Numer. Methods Fluids 73(10), 883–903 (2013)

    Google Scholar 

  15. Gross, S., Reusken, A.: An extended pressure finite element space for two-phase incompressible flows with surface tension. J. Comput. Phys. 224(1), 40–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hesthaven, J., Warburton, T.: Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huerta, A., Angeloski, A., Roca, X., Peraire, J.: Efficiency of high-order elements for continuous and discontinuous Galerkin methods. Int. J. Numer. Methods Eng. 96(9), 529–560 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kirby, R.M., Sherwin, S.J., Cockburn, B.: To CG or to HDG: a comparative study. J. Sci. Comput. 51(1), 183–212 (2011)

  19. Montlaur, A., Fernández-Méndez, S., Huerta, A.: Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations. Int. J. Numer. Methods Fluids 57(9), 1071–1092 (2008)

    Article  MATH  Google Scholar 

  20. Nguyen, N., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peraire, J., Persson, P.O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2008)

    Article  MathSciNet  Google Scholar 

  23. Sevilla, R., Fernández-Méndez, S., Huerta, A.: Comparison of high-order curved finite elements. Int. J. Numer. Methods Eng. 87(8), 719–734 (2011)

    Article  MATH  Google Scholar 

  24. Wang, B., Khoo, B.C.: Hybridizable discontinuous Galerkin method (HDG) for Stokes interface flow. J. Comput. Phys. 247, 262–278 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the DAFOH2 Project (Ministerio de Economia y Competitividad, MTM2013-46313-R), and the Erasmus Mundus Joint Doctorate SEED Project (European Comission)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Fernández-Méndez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürkan, C., Sala-Lardies, E., Kronbichler, M. et al. eXtended Hybridizable Discontinous Galerkin (X-HDG) for Void Problems. J Sci Comput 66, 1313–1333 (2016). https://doi.org/10.1007/s10915-015-0066-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0066-8

Keywords

Navigation