Log in

A Decoupled Unconditionally Stable Numerical Scheme for the Cahn–Hilliard–Hele-Shaw System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a novel decoupled unconditionally stable numerical scheme for the simulation of two-phase flow in a Hele-Shaw cell which is governed by the Cahn–Hilliard–Hele-Shaw system (CHHS) with variable viscosity. The temporal discretization of the Cahn–Hilliard equation is based on a convex-splitting of the associated energy functional. Moreover, the capillary forcing term in the Darcy equation is separated from the pressure gradient at the time discrete level by using an operator-splitting strategy. Thus the computation of the nonlinear Cahn–Hilliard equation is completely decoupled from the update of pressure. Finally, a pressure-stabilization technique is used in the update of pressure so that at each time step one only needs to solve a Poisson equation with constant coefficient. We show that the scheme is unconditionally stable. Numerical results are presented to demonstrate the accuracy and efficiency of our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee, H.-G., Lowengrub, J.S., Goodman, J.: Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14(2), 492–513 (2002). doi:10.1063/1.1425843

    Article  MathSciNet  Google Scholar 

  2. Lee, H.-G., Lowengrub, J.S., Goodman, J.: Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime. Phys. Fluids 14(2), 514–545 (2002). doi:10.1063/1.1425844

    Article  MathSciNet  Google Scholar 

  3. Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele-Shaw system of equations. J. Sci. Comput. 44(1), 38–68 (2010). doi:10.1007/s10915-010-9363-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Feng, X., Wise, S.: Analysis of a Darcy–Cahn–Hilliard diffuse interface model for the Hele-Shaw flow and its fully discrete finite element approximation. SIAM J. Numer. Anal. 50(3), 1320–1343 (2012). doi:10.1137/110827119

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, X., Zhang, Z.: Well-posedness of the Hele-Shaw–Cahn–Hilliard system. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(3), 367–384 (2013). doi:10.1016/j.anihpc.2012.06.003

    Article  MATH  Google Scholar 

  6. Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194(2), 463–506 (2009). doi:10.1007/s00205-008-0160-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998). doi:10.1098/rspa.1998.0273

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a fourier-spectral method. Phys. D Nonlinear Phenom. 179(3–4), 211–228 (2003). doi:10.1016/S0167-2789(03)00030-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004). doi:10.1016/j.jcp.2003.07.035

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, X.: Fully discrete finite element approximations of the Navier-Stokes–Cahn–Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006). doi:10.1137/050638333

    Article  MathSciNet  MATH  Google Scholar 

  11. Kay, D., Welford, R.: Efficient numerical solution of Cahn–Hilliard–Navier–Stokes fluids in 2d. SIAM J. Sci. Comput. 29(6), 2241–2257 (2007). doi:10.1137/050648110

    Article  MathSciNet  MATH  Google Scholar 

  12. Shen, J., Yang, X.: Energy stable schemes for Cahn–Hilliard phase-field model of two-phase incompressible flows. Chin. Ann. Math. Ser. B 31(5), 743–758 (2010). doi:10.1007/s11401-010-0599-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Boyer, F., Minjeaud, S.: Numerical schemes for a three component Cahn–Hilliard model. ESAIM Math. Model. Numer. Anal. 45(4), 697–738 (2011). doi:10.1051/m2an/2010072

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. J. Comput. Phys. 290, 139–156 (2015). doi:10.1016/j.jcp.2015.02.046

    Article  MathSciNet  Google Scholar 

  15. Shinozaki, A., Oono, Y.: Spinodal decomposition in a Hele-Shaw cell. Phys. Rev. A 45, 2161–2164 (1992). doi:10.1103/PhysRevA.45.R2161

    Article  Google Scholar 

  16. Chen, C.-Y., Huang, Y.-S., Miranda, J.A.: Radial Hele-Shaw flow with suction: fully nonlinear pattern formation. Phys. Rev. E 89, 053006 (2014). doi:10.1103/PhysRevE.89.053006

    Article  Google Scholar 

  17. Wise, S.M., Lowengrub, J.S., Cristini, V.: An adaptive multigrid algorithm for simulating solid tumor growth using mixture models. Math. Comput. Model. 53(1–2), 1–20 (2011). doi:10.1016/j.mcm.2010.07.007

    Article  MathSciNet  MATH  Google Scholar 

  18. Han, D., Sun, D., Wang, X.: Two-phase flows in karstic geometry. Math. Methods Appl. Sci. 37(18), 3048–3063 (2014). doi:10.1002/mma.3043

    Article  MathSciNet  MATH  Google Scholar 

  19. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998). Mater. Res. Soc. Sympos. Proc., vol. 529, pp. 39–46. MRS, Warrendale, PA (1998)

  20. Guo, R., **a, Y., Xu, Y.: An efficient fully-discrete local discontinuous Galerkin method for the Cahn–Hilliard–Hele-Shaw system. J. Comput. Phys. 264, 23–40 (2014). doi:10.1016/j.jcp.2014.01.037

    Article  MathSciNet  Google Scholar 

  21. Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Numer. Methods Partial Differential Equ. 29(2), 584–618 (2013). doi:10.1002/num.21721

    Article  MathSciNet  MATH  Google Scholar 

  22. Shen, J., Yang, X.: Decoupled energy stable schemes for phase-field models of two-phase complex fluids. SIAM J. Sci. Comput. 36(1), 122–145 (2014). doi:10.1137/130921593

    Article  MathSciNet  Google Scholar 

  23. Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015). doi:10.1137/140971154

    Article  MathSciNet  Google Scholar 

  24. Collins, C., Shen, J., Wise, S.M.: An efficient, energy stable scheme for the Cahn–Hilliard–Brinkman system. Commun. Comput. Phys. 13(4), 929–957 (2013)

    MathSciNet  Google Scholar 

  25. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195(44–47), 6011–6045 (2006). doi:10.1016/j.cma.2005.10.010

    Article  MathSciNet  MATH  Google Scholar 

  26. Guermond, J.-L., Salgado, A.: A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228(8), 2834–2846 (2009). doi:10.1016/j.jcp.2008.12.036

    Article  MathSciNet  MATH  Google Scholar 

  27. Rannacher, R.: On chorin’s projection method for the incompressible Navier–Stokes equations. In: Heywood, J., Masuda, K., Rautmann, R., Solonnikov, V. (eds.) The Navier–Stokes Equations II Theory and Numerical Methods. Lecture Notes in Mathematics, vol. 1530, pp. 167–183. Springer, (1992). doi:10.1007/BFb0090341

  28. Shen, J.: On a new pseudocompressibility method for the incompressible Navier–Stokes equations. Appl. Numer. Math. 21(1), 71–90 (1996). doi:10.1016/0168-9274(95)00132-8

    Article  MathSciNet  MATH  Google Scholar 

  29. Han, D., Wang, X., Wu, H.: Existence and uniqueness of global weak solutions to a Cahn–Hilliard–Stokes–Darcy system for two phase incompressible flows in karstic geometry. J. Differential Equations 257(10), 3887–3933 (2014). doi:10.1016/j.jde.2014.07.013

    Article  MathSciNet  MATH  Google Scholar 

  30. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15, p. 350. Springer, (1991). doi:10.1007/978-1-4612-3172-1

  31. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40, p. 530. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)

  32. Diegel, A.E., Feng, X.H., Wise, S.M.: Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53(1), 127–152 (2015). doi:10.1137/130950628

    Article  MathSciNet  Google Scholar 

  33. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interfaces Free Bound. 10(1), 15–43 (2008). doi:10.4171/IFB/178

    Article  MathSciNet  MATH  Google Scholar 

  34. Kohn, R.V., Otto, F.: Upper bounds on coarsening rates. Commun. Math. Phys. 229(3), 375–395 (2002). doi:10.1007/s00220-002-0693-4

    Article  MathSciNet  MATH  Google Scholar 

  35. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691 (2010). doi:10.3934/dcds.2010.28.1669

    Article  MathSciNet  MATH  Google Scholar 

  36. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B, pp. 469–1202. Springer, (1990). Nonlinear monotone operators. Translated from the German by the author and Leo F, Boron

Download references

Acknowledgments

This work was completed while the author was supported as a Research Assistant on an NSF Grant (DMS1312701). The author also acknowledges the support of NSF DMS1008852, a planning grant and a multidisciplinary support grant from the Florida State University. The author thanks Dr. X. Wang and Dr. S.M. Wise for some insights into the problem and many helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daozhi Han.

Appendix

Appendix

Proof of Proposition 1

Taking the test function \(v_h=1\) in Eq. (3.13) gives

$$\begin{aligned} \int _{{\varOmega }} \phi _h^{n+1}\, dx= \int _{{\varOmega }} \phi _h^{n}\, dx. \end{aligned}$$

We define the average \(a:=\int _{{\varOmega }} \phi _h^n\, dx/ \int _{{\varOmega }}1\, dx\).

Thanks to the decoupling of the pressure equation from the Cahn–Hilliard equation, we only need to show the existence and uniqueness of solutions to Eqs. (3.13) and (3.14). For convenience, we first look for solutions in \(M_h\, \times \, M_h\), i.e., seek \(\{\phi _h, \mu _h\} \in M_h \times M_h\) such that

$$\begin{aligned}&\left( \phi _h-\phi _h^n, v_h\right) +k(\tilde{m}(\phi _h^n)\nabla \mu _h, \nabla v_h)+k\left( \frac{\phi _h^n}{12\eta (\phi _h^n)}\nabla p_h^n, \nabla v_h\right) =0, \forall v_h \in M_h, \end{aligned}$$
(6.1)
$$\begin{aligned}&\epsilon ^2 \left( \nabla \phi _h, \nabla \varphi _h\right) +\left( (\phi _h+a)^3-\phi _h^n, \varphi _h\right) -(\mu _h, \varphi _h)=0, \quad \forall \varphi _h \in M_h, \end{aligned}$$
(6.2)

with a new mobility function \(\tilde{m}(\phi _h^n)=\frac{1}{Pe}\big [m(\phi _h^n)+\frac{\gamma }{\epsilon } \frac{(\phi ^n_h)^2}{12\eta (\phi _h^n)}\big ]\). It follows from the boundedness assumption (1.3) that

$$\begin{aligned} 0<\frac{m_1}{Pe} \le \tilde{m}(\phi _h^n) \le C(||\phi _h^n||_{L^\infty }) \end{aligned}$$
(6.3)

Note also that \(M_h\) is a Hilbert space with the inner product \((u_h, v_h)_{M_h}=(\nabla u_h, \nabla v_h)\) and induced norm \(|| u_h ||_{M_h}^2=(u_h, u_h)_{M_h}\), thanks to the Poincare inequality.

Claim: Eq. (6.2) defines a bounded and continuous solution operator \(\phi _h(\mu _h): M_h \rightarrow M_h\).

Indeed, given \(\mu _h \in M_h\), Eq. (6.2) is the Euler–Lagrange equation of the following strict convex minimization problem

$$\begin{aligned} \min _{\phi _h \in M_h} J(\phi _h):=\min _{\phi _h \in M_h} \int _{{\varOmega }}\frac{\epsilon ^2}{2}|\nabla \phi _h|^2+ \frac{1}{4}(\phi _h+a)^4- (\mu _h+\phi _h^n) \phi _h\, dx. \end{aligned}$$

Thus the theory of calculus of variation implies the unique existence of \(\phi _h \in M_h\) such that Eq. (6.2) holds.

For continuity of the operator \(\phi _h(\mu _h)\), let us assume that \(\phi _h^{(1)}\) and \(\phi _h^{(2)}\) are solutions to Eq. (6.2) with source terms \(\mu _h^{(1)}\) and \(\mu _h^{(2)}\), respectively. Subtract the two equations satisfied by \(\phi _h^{(1)}\) and \(\phi _h^{(2)}\) and take the test function \(\varphi _h=\phi _h^{(1)}-\phi _h^{(2)}\)

$$\begin{aligned}&\epsilon ^2||\phi _h^{(1)}-\phi _h^{2}||_{M_h}^2+\left( (\phi _h^{(1)}+a)^3-(\phi _h^{(2)}+a)^3, \phi _h^{(1)}-\phi _h^{(2)}\right) \\&\quad =(\mu _h^{(1)}-\mu _h^{(2)}, \phi _h^{(1)}-\phi _h^{(2)}) \\&\quad \le ||\mu _h^{(1)}-\mu _h^{(2)}||_{L^2}||\phi _h^{(1)}-\phi _h^{(2)}||_{L^2}\\&\quad \le C||\mu _h^{(1)}-\mu _h^{(2)}||_{M_h}||\phi _h^{(1)}-\phi _h^{(2)}||_{M_h}. \end{aligned}$$

The monotonicity of the function \(f(x)=x^3\) implies (cf. [29])

$$\begin{aligned} \left( (\phi _h^{(1)}+a)^3-(\phi _h^{(2)}+a)^3, (\phi _h^{(1)}-a)-(\phi _h^{(2)}-a)\right) \ge 0. \end{aligned}$$
(6.4)

The continuity of \(\phi _h(\mu _h)\) is thus proved.

To prove the boundedness of \(\phi _h(\mu _h)\), we take the test function \(\varphi _h=\phi _h\) in Eq. (6.2)

$$\begin{aligned} \epsilon ^2||\phi _h||_{M_h}^2+ \int _{{\varOmega }} (\phi _h+a)^4\, dx = a \int _{{\varOmega }} (\phi _h+a)^3\, dx +(\mu _h+\phi _h^n, \phi _h) \end{aligned}$$
(6.5)

Applying the Young’s inequality \(bc \le \frac{b^p}{p}+\frac{c^q}{q}\) with \(p=\frac{4}{3}\) and \(q=4\), one obtains

$$\begin{aligned} a\int _{{\varOmega }} (\phi _h+a)^3\, dx \le \int _{{\varOmega }}\frac{3}{4}(\phi _h+a)^4+\frac{a^4}{4} |{\varOmega }|. \end{aligned}$$
(6.6)

It follows, by Cauchy–Schwartz inequality and Poincare’s inequality, that

$$\begin{aligned} ||\phi _h||_{M_h} \le C(|a|, |{\varOmega }|, ||\phi _h^n||_{L^2})(1+||\mu _h||_{M_h}). \end{aligned}$$

Now we define an operator \(T: M_h \rightarrow M_h\) such that for any \(v_h \in M_h\)

$$\begin{aligned} \left( T(\mu _h), v_h \right) _{M_h}:= \left( \phi _h(\mu _h)-\phi _h^n, v_h\right) +k(\tilde{m}(\phi _h^n)\nabla \mu _h, \nabla v_h)+k\left( \frac{\phi _h^n}{12\eta (\phi _h^n)}\nabla p_h^n, \nabla v_h\right) , \end{aligned}$$

where \(\phi _h(\mu _h)\) is the solution operator defined via Eq. (6.2).

It is clear that \(T(\mu _h)\) is continuous in \(M_h\), in view of the continuity of \(\phi _h(\mu _h)\). Further, the boundedness of \(\phi _h(\mu _h)\) implies that

$$\begin{aligned}&\Big |\left( T(\mu _h), v_h \right) _{M_h} \Big | \le C(||\phi _h^n||_{L^\infty }, ||\phi _h^n||_{L^2}, ||\nabla p_h^n||_{L^2})(1+||\mu _h||_{M_h})||v_h||_{M_h}, \end{aligned}$$

from which the boundedness of T follows.

Next, we show that T is coercive in the sense that \(\frac{\left( T(\mu _h), \mu _h \right) _{M_h}}{||\mu _h||_{M_h}} \rightarrow \infty \), as \(||\mu _h||_{M_h} \rightarrow \infty \). One has, by using Eq. (6.2) with \(\varphi _h=\phi _h\)

$$\begin{aligned}&\left( T(\mu _h), \mu _h \right) _{M_h} \\&\quad = \left( \phi _h(\mu _h)-\phi _h^n, \mu _h\right) +k(\tilde{m}(\phi _h^n)\nabla \mu _h, \nabla \mu _h)+k\left( \frac{\phi _h^n}{12\eta (\phi _h^n)}\nabla p_h^n, \nabla \mu _h\right) \\&\quad \ge k\frac{m_1}{Pe}||\mu _h||_{M_h}^2+\epsilon ^2 ||\nabla \phi _h||_{L^2}^2 + \int _{{\varOmega }}(\phi _h+a)^4\, dx - a \int _{{\varOmega }} (\phi _h+a)^3\, dx \\&\quad \quad -(\phi _h^n, \mu _h)+k\left( \frac{\phi _h^n}{12\eta (\phi _h^n)}\nabla p_h^n, \nabla \mu _h\right) \\&\quad \ge k\frac{m_1}{Pe}||\mu _h||_{M_h}^2-C||\phi _h^n||_{L^2}||\mu _h||_{M_h}-C(||\phi _h||_{L^\infty })||\nabla p_h^n||_{L^2}||\mu _h||_{M_h}-C \\&\quad \ge C||\mu _h||_{M_h}^2-C(||\phi _h^n||_{L^2}, ||\phi _h^n||_{L^\infty }, ||\nabla p_h^n||_{L^2}), \end{aligned}$$

where one has utilized the inequality (6.6). The coercivity of T is thus justified.

The operator T is also strictly monotone, since Eqns. (6.1) and (6.2) yield

$$\begin{aligned}&\left( T(\mu _h)-T(v_h), \mu _h-v_h \right) _{M_h} \\&\quad = \left( \phi _h(\mu _h)-\phi _h(v_h), \mu _h-v_h \right) +k\left( \tilde{m}(\phi _h^n)\nabla (\mu _h-v_h), \nabla (\mu _h-v_h)\right) \\&\quad \ge k\frac{m_1}{Pe}||\mu _h-v_h||_{M_h}^2+\epsilon ^2\left( \nabla (\phi _h(\mu _h)-\phi _h(v_h)), \nabla (\phi _h(\mu _h)-\phi _h(v_h))\right) \\&\qquad +\left( (\phi _h(\mu _h)+a)^3-(\phi _h(v_h)+a)^3, \phi _h(\mu _h)-\phi _h(v_h)\right) \\&\quad \ge 0, \end{aligned}$$

with equality if and only if \(\mu _h=v_h\). Here the inequality (6.4) is applied again.

The Browder–Minty Lemma ([37], p. 557, Theorem 26.A.) implies that there is a unique \(\mu _h \in M_h\) such that \(T(\mu _h)=0\). That is, there exists a unique pair \(\{\phi _h, \mu _h\} \in M_h \times M_h\) such that Eqs. (6.1) and (6.2) hold. Now one defines \(\phi _h^{n+1}=\phi _h+a\) and \(\mu _h^{n+1}=\mu _h+\frac{1}{|{\varOmega }|} \int _{{\varOmega }}(\phi _h^{n+1})^3-\phi _h^n\, dx \). Then \(\{\phi _h^{n+1}, \mu _h^{n+1}\} \in Y_h \times Y_h\) is the unique solution to Eqs. (3.13) and (3.14). The proof of Proposition 1 is now complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D. A Decoupled Unconditionally Stable Numerical Scheme for the Cahn–Hilliard–Hele-Shaw System. J Sci Comput 66, 1102–1121 (2016). https://doi.org/10.1007/s10915-015-0055-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0055-y

Keywords

Mathematics Subject Classification

Navigation