Log in

Three-layered nanostructured metamaterials for surface plasmon polariton guiding

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A novel metamaterial (MM) to guide surface plasmon polariton (SPP) is considered. Specific example of three-layered nanostructured MM and its dispersion engineering are studied in details allowing the development of new devices. Herein we deal with the general original concept of MMs based on inclusions of the additional layers as with a promising class of materials. The metal material stands for as the limiting factor of the frequency range that SPP mode exists. It is worthwhile noting that the SPP mode at high frequency is characterized by extremely large loss. The former restriction causes serious limitations for the potential applications of SPP in the field of optical interconnection, active SPP devices and so on. The surface mode guided by dielectric/graphene/dielectric multilayers MM has been studied based on the theory of electromagnetic field aiming to extend the frequency range of SPP mode. It is demonstrated that surface mode could be supported by the MM. Moreover, the frequency range to where conventional metal SPP cannot exist is extended. Herein, it is concluded that, the MM guided SPP mode can potentially be used to enhance the plasmonic performance over traditional metal one by varying the structure parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. P. Ginzburg, D. Arbel, M. Orenstein, Gap plasmon polariton structure for very efficient microscale-tonanoscale interfacing. Opt. Lett. 31, 3288–3290 (2006)

    Article  PubMed  Google Scholar 

  3. P. Ginzburg, M. Orenstein, Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching. Opt. Express 15, 6762–6767 (2007)

    Article  PubMed  Google Scholar 

  4. E. Feigenbaum, M. Orenstein, Optical 3D cavity modes below the diffraction-limit using slow-wave surfaceplasmon-polaritons. Opt. Express 15, 2607–2612 (2007)

    Article  PubMed  Google Scholar 

  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer, Berlin, 1988)

    Book  Google Scholar 

  6. J.J. Burke, G.I. Stegeman, T. Tamir, Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33, 5186 (1986)

    Article  CAS  Google Scholar 

  7. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  8. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  CAS  Google Scholar 

  9. T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-Infrared applications. ACS Nano 8, 1086–1101 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. J. Li, Y. Zhou, B. Quan, X. Pan, X. Xu, Z. Ren, F. Hu, H. Fan, M. Qi, J. Bai, Graphene–metamaterial hybridization for enhanced terahertz response. Carbon 78, 102–112 (2014)

    Article  CAS  Google Scholar 

  11. Y.X. Zhou, X.L. Xu, H.M. Fan, Z.Y. Ren, J.T. Bai, L. Wang, Phys. Chem. Chem. Phys. 15, 5084–5090 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. N. Papasimakis, S. Thongrattanasiri, N.I. Zheludev, F.J. García de Abajo, The magnetic response of graphene split-ring metamaterials. Light: Sci. Appl. 2, 78 (2013)

    Article  CAS  Google Scholar 

  13. Y. Fan, Z. Wei, Z. Zhang, H. Li, Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators. Opt. Lett. 38, 5410–5413 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. L.A. Falkovsky, Optical properties of graphene. J. Phys: Conf. Ser. 129, 012004 (2008)

    Google Scholar 

  15. G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103(6), 064302 (2008)

    Article  CAS  Google Scholar 

  16. A. Vakil, N. Engheta, Transformation optics using graphene. Science 332(6035), 1291–1294 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. M.G. Cattom, D.R. Tilley, Introduction to surface and superlattice excitations (IOP Publishing, Bristol, 2005). (Ch. 8–9)

    Google Scholar 

  18. R. Li, C. Cheng, F.-F. Ren, J. Chen, Y.-X. Fan, J. Ding, H.-T. Wang, Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal. Appl. Phys. Lett. 92, 141115 (2008)

    Article  CAS  Google Scholar 

  19. J.A. Sorni, M. Naserpour, C.J. Zapata-Rodriguez, J.J. Miret, Dyakonov surface waves in lossy metamaterials. Opt. Commun. 355, 251 (2015)

    Article  CAS  Google Scholar 

  20. O. Takayama, D. Artigas, L. Torner, Practical dyakonons. Opt. Lett. 37, 4311 (2012)

    Article  PubMed  Google Scholar 

  21. A.A. Orlov, P.M. Voroshilov, P.A. Belov, Y.S. Kivshar, Engineered optical nonlocality in nanostructured metamaterials. Phys. Rev. B 84, 045424 (2011)

    Article  CAS  Google Scholar 

  22. Y.-L. Zhang, Q. Zhang, X.-Z. Wang, Extraordinary surface polaritons in obliquely truncated dielectric/metal metamaterials. J. Opt. Soc. Am. B 33, 543 (2016)

    Article  CAS  Google Scholar 

  23. I. Iorsh, A. Orlov, P. Belov, Y. Kivshar, Interface modes in nanostructured metal-dielectric metamaterials. Appl. Phys. Lett. 99(15), 151914 (2011)

    Article  CAS  Google Scholar 

  24. S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005). https://doi.org/10.1063/1.1951057

    Article  CAS  Google Scholar 

  25. A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005). https://doi.org/10.1016/j.physrep.2004.11.001

    Article  CAS  Google Scholar 

  26. J. Kim, V.P. Drachev, Z. Jacob, G.V. Naik, A. Boltasseva, E.E. Narimanov, V.M. Shalaev, Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express 20(7), 8100–8116 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. N. Engheta, Pursuing near-zero response. Science 340, 286–287 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. T. Gric, O. Hess, Tunable surface waves at the interface separating different graphene–dielectric composite hyperbolic metamaterials. Opt. Express 25, 11466–11476 (2017)

    Article  CAS  PubMed  Google Scholar 

  29. J.A. Dionne, L.A. Sweatlock, H.A. Atwater, A. Polman, Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 72(7), 075405 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Gric.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trofimov, A., Gric, T. & Hess, O. Three-layered nanostructured metamaterials for surface plasmon polariton guiding. J Math Chem 57, 190–201 (2019). https://doi.org/10.1007/s10910-018-0943-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0943-0

Keywords

Navigation