Log in

A new coupled wavelet-based method applied to the nonlinear reaction–diffusion equation arising in mathematical chemistry

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we have applied the wavelet-based coupled method for finding the numerical solution of Murray equation. To the best of our knowledge, until now there is no rigorous Legendre wavelets solution has been reported for the Murray equation. The highest derivative in the differential equation is expanded into Legendre series, this approximation is integrated while the boundary conditions are applied using integration constants. With the help of Legendre wavelets operational matrices, the Murray equation is converted into an algebraic system. Block pulse functions are used to investigate the Legendre wavelets coefficient vectors of nonlinear terms. The convergence of the proposed method is proved. Finally, we have given a numerical example to demonstrate the validity and applicability of the method. Moreover the use of proposed wavelet-based coupled method is found to be simple, efficient, less computation costs and computationally attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Murray, Nonlinear Differential Equation Models in Biology (Clarendon Press, Oxford, 1977)

  2. J.D. Murray, Mathematical Biology (Springer, Berlin, 1989)

    Book  Google Scholar 

  3. R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugen. 7, 353–369 (1937)

    Google Scholar 

  4. R. Cherniha, Symmetry and exact solutions of heat-and-mass transfer equations in Tokamak plasma. Dopovidi Akad. Nauk. Ukr. 4, 17–21 (1995). doi:10.1007/BF02595363

    Google Scholar 

  5. R. Cherniha, A constructive method for construction of new exact solutions of nonlinear evolution equations. Rep. Math. Phys. 38, 301–310 (1996). doi:10.1007/BF02513431

    Article  Google Scholar 

  6. R. Cherniha, Application of a constructive method for construction of non-Lie solutions of nonlinear evolution equations. Ukr. Math. J. 49, 814–827 (1997)

    Article  Google Scholar 

  7. R.M. Cherniha, New ansatze and exact solution for nonlinear reaction-diffusion equations arising in mathematical biology. Symmetry Nonlinear Math. Phys. 1, 138–146 (1997)

    Google Scholar 

  8. D.J. Aronson, H.F. Weinberg, Nonlinear Diffusion in Population Genetics Combustion and Never Pulse Propagation (Springer, New York, NY, 1988)

    Google Scholar 

  9. A. Cuyt, L. Wuytack, Nonlinear Methods in Numerical Analysis (Elsevier Science, Amsterdam, 1987)

    Google Scholar 

  10. M. Razzaghi, S. Yousefi, The Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 32, 495–502 (2001). doi:10.1080/00207720120227

    Google Scholar 

  11. H. Parsian, Two dimension Legendre wavelets and operational matrices of integration. Acta Math. Acad. Paedagog. Nyiregyháziens 21, 101–106 (2005)

    Google Scholar 

  12. M. Razzaghi, S. Yousefi, The Legendre wavelets direct method for variational problems. Math. Comput. Simul. 53, 185–192 (2000). doi:10.1016/S0378-4754(00)00170-1

    Article  Google Scholar 

  13. S.A. Yousefi, Legendre wavelets method for solving differential equations of Lane–Emden type. Appl. Math. Comput. 181, 1417–1442 (2006). doi:10.1016/j.amc.2006.02.031

    Article  Google Scholar 

  14. F. Mohammadi, M.M. Hosseini, A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations. J. Frankl. Inst. 348, 1787–1796 (2011). doi:10.1016/j.jfranklin.2011.04.017

    Article  Google Scholar 

  15. K. Maleknejad, S. Sohrabi, Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets. Appl. Math. Comput. 186, 836–843 (2007). doi:10.1016/j.amc.2006.08.023

    Article  Google Scholar 

  16. G. Hariharan, K. Kannan, K.R. Sharma, Haar wavelet in estimating the depth profile of soil temperature. Appl. Math. Comput. 210, 119–225 (2009). doi:10.1016/j.amc.2008.12.036

    Article  Google Scholar 

  17. G. Hariharan, K. Kannan, Haar wavelet method for solving Fisher’s equation. Appl. Math. Comput. 211, 284–292 (2009). doi:10.1016/j.amc.2008.12.089

    Article  Google Scholar 

  18. G. Hariharan, K. Kannan, Haar wavelet method for solving nonlinear parabolic equations. J. Math. Chem. 48, 1044–1061 (2010a). doi:10.1007/s10910-010-9724-0

    Article  CAS  Google Scholar 

  19. G. Hariharan, K. Kannan, A comparative study of a Haar wavelet method and a restrictive Taylor’s series method for solving convection-diffusion equations. Int. J. Comput. Methods Eng. Sci. Mech. 11(4), 173–184 (2010b). doi:10.1080/15502281003762181

    Article  Google Scholar 

  20. S.J. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method (CRC Press/Chapman and Hall, Boca Raton, 2004)

    Google Scholar 

  21. A.M. Wazwaz, A. Gorguis, An analytical study of Fisher’s equation by using Adomian decomposition method. Appl. Math. Comput. 154, 609–620 (2004). doi:10.1016/S0096-3003(03)00738-0

    Article  Google Scholar 

  22. S. Abbasbandy, Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method. Appl. Math. Model. 32, 2706–2714 (2008). doi:10.1016/j.apm.2007.09.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hariharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariharan, G., Rajaraman, R. A new coupled wavelet-based method applied to the nonlinear reaction–diffusion equation arising in mathematical chemistry. J Math Chem 51, 2386–2400 (2013). https://doi.org/10.1007/s10910-013-0217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0217-9

Keywords

Navigation