Log in

Synthesis, Structural, Dielectric, Magnetic and Magnetodielectric Properties of Graphene Quantum Dots (GQDs) Decorated ZnFe2O4 Hybrid Nanocomposite (GQD-ZHN)

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A graphene quantum dot (GQD)-decorated ZnFe2O4 hybrid nanocomposite [GQD-ZHN] was synthesized using the sol–gel technique. In the X-ray diffraction (XRD) analysis, a cubic spinel structure was identified with the space group Fd-3 m. Fourier-transform infrared (FT-IR) analysis revealed the vibration bands of the samples, while the existence of GQDs in GQD-ZHN was confirmed by the Raman spectra. Field emission scanning electron microscopy (FESEM) provided insights into the microstructural morphological topology of the surface. The dielectric properties of GQD-ZHN were analysed with respect to their dependence on frequency and temperature and explained by Maxwell–Wagner-type polarization. The frequency-dependent ac conductivity (σac) followed Jonscher’s power law and investigated the dynamics of ion hop** in GQD-ZHN. Impedance and modulus spectroscopy were used to further evaluate electrical characteristics such as relaxation time (τ). Nyquist plots have been used to estimate grain and grain boundary contributions. The GQD-ZHN exhibited superparamagnetic properties at room temperature. At room temperature, GQD-ZHN exhibited a strong magneto-dielectric coupling (MD) and showed negative magneto-dielectric properties in low-frequency regions. These properties of GQD-ZHN enable it to be used as a potential application in microelectronic systems, spintronics and memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data behind the study's conclusions can be obtained from the corresponding author upon demand.

References

  1. S.A. Jadhav, S.B. Somvanshi, M.V. Khedkar, S.R. Patade, K.M. Jadhav, J. Mater. Sci. Mater. Electron. 31, 11352–11365 (2020). https://doi.org/10.1007/s10854-020-03684-1

    Article  CAS  Google Scholar 

  2. M. Mahdavi, M.B. Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z.A. Rahman, J. Amin, Molecules 18(7), 7533–7548 (2013). https://doi.org/10.3390/molecules18077533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S.B. Somvanshi, P.B. Kharat, M.V. Khedkar, K.M. Jadhav, Ceram. Int. 46(6), 7642–7653 (2020). https://doi.org/10.1016/j.ceramint.2019.11.265

    Article  CAS  Google Scholar 

  4. A. Sutka, K.A. Gross, Sens. Actuators B: Chem. 222, 95–105 (2016). https://doi.org/10.1016/j.snb.2015.08.027

    Article  CAS  Google Scholar 

  5. D.S. Mathew, R.S. Juang, Chem. Eng. J. 129, 51–65 (2007). https://doi.org/10.1016/j.cej.2006.11.001

    Article  CAS  Google Scholar 

  6. S. Raghuvanshi, S.N. Kane, T.R. Tatarchuk, F. Mazaleyrat, AIP Conf. Proc. 1953, 030055 (2018). https://doi.org/10.1063/1.5032390

    Article  CAS  Google Scholar 

  7. H. Cheema, V. Yadav, R.S. Maurya, V. Yadav, A. Kumar, N. Sharma, P.A. Alvi, U. Kumar, J. Mater. Sci. Mater. Electron. 32, 23578–23600 (2021). https://doi.org/10.1007/s10854-021-06847-w

    Article  CAS  Google Scholar 

  8. B.F. Bogacz, R. Gargula, P. Kurzydło, A.T. Pędziwiatr, T. Tatarchuk, N. Paliychuk, Acta Phys. Pol. A. 134, 993–998 (2018). https://doi.org/10.12693/aphyspola.134.993

    Article  CAS  ADS  Google Scholar 

  9. R. Biswal, P. Yadav, B. Khan, P. Harish, M.K.S. Kumar, Mater. Today Proceed. 67, 145–150 (2022). https://doi.org/10.1016/j.matpr.2022.05.575

    Article  CAS  Google Scholar 

  10. P. Babaei, J.S. Ghomi, RSC Adv. 11, 34724–34734 (2021). https://doi.org/10.1039/D1RA05739A

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. P. Guo, L. Cui, Y. Wang, M. Lv, B. Wang, X.S. Zhao, In Langmuir. Am. Chem. Soc. (ACS) 29, 8997–9003 (2013). https://doi.org/10.1021/la401627x

    Article  CAS  Google Scholar 

  12. C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J.Z. Jiang, J. Phys. Chem. C 111(33), 12274–12278 (2007). https://doi.org/10.1021/jp0732763

    Article  CAS  Google Scholar 

  13. A. Mekap, P.R. Das, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 24(12), 4757–4763 (2013). https://doi.org/10.1007/s10854-013-1470-1

    Article  CAS  Google Scholar 

  14. R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, M. Holek, J. Phys. Chem. Solids 110, 87–99 (2017). https://doi.org/10.1016/j.jpcs.2017.05.029

    Article  CAS  ADS  Google Scholar 

  15. A.H. Alshammari, T.A. Taha, Eur. Phys. J. Plus 136, 1201 (2021). https://doi.org/10.1140/epjp/s13360-021-02206-0

    Article  CAS  Google Scholar 

  16. M.F. Hossain, T.C. Paul, M.N.I. Khan, S. Islam, P. Bala, Mater. Chem. Phys. 271, 124914 (2021). https://doi.org/10.1016/j.matchemphys.2021.124914

    Article  CAS  Google Scholar 

  17. D. Mohanty, P. Mallick, S.K. Biswal, B. Behera, R.K. Mohapatra, A. Behera, S.K. Satpathy, Mater. Today: Proceed. 33, 4971–4975 (2020). https://doi.org/10.1016/j.matpr.2020.02.827

    Article  CAS  Google Scholar 

  18. S.J. Salih, W.M. Mahmood, Heliyon. 9(6), E16601 (2023). https://doi.org/10.1016/j.heliyon.2023.e16601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Chen, X.-Y. Zhang, C. Vittoria, V.G. Harris, Appl. Phys. Lett. 94(10), 102906 (2009). https://doi.org/10.1063/1.3095498

    Article  CAS  ADS  Google Scholar 

  20. R. Biswal, B. Khan, M.K. Singh, J. Mater. Res. 37, 3459–3469 (2022). https://doi.org/10.1557/s43578-022-00717-9

    Article  CAS  ADS  Google Scholar 

  21. T. Garg, A.R. Kulkarni, N. Venkataramani, Smart Mater. Struct. 25, 085032 (2016). https://doi.org/10.1088/0964-1726/25/8/085032

    Article  CAS  ADS  Google Scholar 

  22. S. Singh, N. Kumar, R. Bhargava, M. Sahni, K. Sung, J.H. Jung, J. Alloy. Compd. 587, 437–441 (2014). https://doi.org/10.1016/j.jallcom.2013.10.136

    Article  CAS  Google Scholar 

  23. P. Srivastava, S. Chaudhary, S. Patnaik, A.I.P. Conf, Proc. 1942(1), 130048 (2018). https://doi.org/10.1063/1.5029118

    Article  CAS  Google Scholar 

  24. R. Biswal, P. Yadav, B. Khan, P. Kumar, M.K. Singh, Ferroelectrics 616(1), 53–69 (2023). https://doi.org/10.1080/00150193.2023.2269160

    Article  CAS  ADS  Google Scholar 

  25. T. Chen, B. Liu, Mater. Lett. 209, 163–166 (2017). https://doi.org/10.1016/j.matlet.2017.07.088

    Article  CAS  Google Scholar 

  26. Z. Naghshbandi, N. Arsalani, M.S. Zakerhamidi, K.E. Geckeler, Appl. Sci. Surf. 443, 484–491 (2018). https://doi.org/10.1016/j.apsusc.2018.02.283

    Article  CAS  ADS  Google Scholar 

  27. S. Rashid, S. Perveen, S. Hafeez, S. uddin Asad, M.Z. Khan, F. Azad, J. Magnet. Magnet. Mater. 570, 170548 (2023). https://doi.org/10.1016/j.jmmm.2023.170548

    Article  CAS  Google Scholar 

  28. B. Li, X. Yu, X. Yu, R. Du, L. Liu, Y. Zhang, Appl. Surf. Sci. 478, 991–997 (2019). https://doi.org/10.1016/j.apsusc.2019.01.151

    Article  CAS  ADS  Google Scholar 

  29. R. Rabeya, S. Mahalingam, A. Manap, M. Satgunam, M. Akhtaruzzaman, C.H. Chia, Int. J. Quant. Chem. (2022). https://doi.org/10.1002/qua.26900

    Article  Google Scholar 

  30. M. Facure, R. Schneider, L. Mercante, D. Correa, Environ. Sci. Nano (2020). https://doi.org/10.1039/D0EN00787K

    Article  Google Scholar 

  31. H.S. Tripathi, R. Mukherjee, M. Rudra, R. Sutradhar, R.A. Kumar, T.P. Sinha, AIP Conf. Proc. 2162, 020088 (2019). https://doi.org/10.1063/1.5130298

    Article  CAS  Google Scholar 

  32. S. Kim, S.W. Hwang, M.-K. Kim, D.Y. Shin, D.H. Shin, C.O. Kim, S.B. Yang, J.H. Park, E. Hwang, S.H. Choi, G. Ko, S. Sim, C. Sone, H.J. Choi, S. Bae, B.H. Hong, ACS Nano 6, 8203 (2012). https://doi.org/10.1021/nn302878r

    Article  CAS  PubMed  Google Scholar 

  33. X. Chu, P. Dai, S. Liang, A. Bhattacharya, Y. Dong, M. Epifani, Physica E 106, 326–333 (2019). https://doi.org/10.1016/j.physe.2018.08.003

    Article  CAS  ADS  Google Scholar 

  34. S.B. Martínez, M. Valcárcel, Anal. Chim. Acta 896, 78–84 (2015). https://doi.org/10.1016/j.aca.2015.09.019

    Article  CAS  Google Scholar 

  35. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Carbon 50, 4738 (2012). https://doi.org/10.1016/j.carbon.2012.06.002

    Article  CAS  Google Scholar 

  36. M.G. Naseri, E.B. Saion, H.A. Ahangar, A.H. Shaari, M. Hashim, Solid State Commun. 151(14–15), 1031–1035 (2011). https://doi.org/10.1016/j.ssc.2011.04.018

    Article  CAS  ADS  Google Scholar 

  37. Y. Sun, Y. Zheng, H. Pan, J. Chen, W. Zhang, L. Fu, K. Zhang, N. Tang, Y. Du, npj Quant. Mater. (2017). https://doi.org/10.1038/s41535-017-0010-2

    Article  Google Scholar 

  38. R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, J. Alloy. Compd. 736, 1–11 (2018). https://doi.org/10.1016/j.jallcom.2017.11.084

    Article  CAS  Google Scholar 

  39. Z. Yang, Y. Wan, G. **ong, D. Li, Q. Li, C. Ma, R. Guo, H. Luo, Mater. Res. Bull. 61, 292–297 (2015). https://doi.org/10.1016/j.materresbull.2014.10.004

    Article  CAS  Google Scholar 

  40. J. Di, J. **a, Y. Ge, H. Li, H. Ji, H. Xu, Q. Zhang, H. Li, M. Li, Appl. Catal. B Environ. 168–169, 51–61 (2015). https://doi.org/10.1016/j.apcatb.2014.11.057

    Article  CAS  Google Scholar 

  41. R.M. Thankachan, M.M. Rahman, I. Sultana, A.M. Glushenkov, S. Thomas, N. Kalarikkal, Y. Chen, J. Power. Sources 282, 462–470 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.039

    Article  CAS  ADS  Google Scholar 

  42. Z. Wang, D. Schiferl, H. Yusheng Zhao, C. St O’Neill, J. Phys. Chem. Solids 64, 2517–2523 (2003). https://doi.org/10.1016/j.jpcs.2003.08.005

    Article  CAS  ADS  Google Scholar 

  43. H. Kalita, V.S. Palaparthy, M.S. Baghini, M. Aslam, Sens. Actuators, B: Chem. 233, 582–590 (2016). https://doi.org/10.1016/j.snb.2016.04.131

    Article  CAS  Google Scholar 

  44. A. Muthurasu, P. Dhandapani, V. Ganesh, New J. Chem. 40, 9111–9124 (2016). https://doi.org/10.1039/C6NJ00586A

    Article  CAS  Google Scholar 

  45. R.D. Waldron, Phys. Rev. 99, 1727–1734 (1955). https://doi.org/10.1103/PhysRev.99.1727

    Article  CAS  ADS  Google Scholar 

  46. A. Pradeep, G. Chandrasekaran, Mater. Lett. 60(3), 371–374 (2006). https://doi.org/10.1016/j.matlet.2005.08.053

    Article  CAS  Google Scholar 

  47. M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 093704 (2011). https://doi.org/10.1063/1.3582142

    Article  CAS  ADS  Google Scholar 

  48. N. Chen, L. Chen, Y. Cheng, K. Zhao, X. Wu, Y. **an, Talanta 132, 155–161 (2015). https://doi.org/10.1016/j.talanta.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  49. S.K. Tuteja, R. Chen, M. Kukkar, C.K. Song, R. Mutreja, S. Singh, A.K. Paul, H. Lee, K.H. Kim, A. Deep, C.R. Suri, Biosens. & Bioelectron. 86, 548–556 (2016). https://doi.org/10.1016/j.bios.2016.07.052

    Article  CAS  Google Scholar 

  50. P. Chen, F. Wang, Z.F. Chen, Q. Zhang, Y. Su, L. Shen, K. Yao, Y. Liu, Z. Cai, W. Lv, G. Liu, Appl. Catal. B Environ. 204, 250–259 (2017). https://doi.org/10.1016/j.apcatb.2016.11.040

    Article  CAS  Google Scholar 

  51. A. Manohar, C. Krishnamoorthi, K.C.B. Naidu, C. Pavithra, Appl. Phys. A 125, 477 (2019). https://doi.org/10.1007/s00339-019-2760-0

    Article  CAS  ADS  Google Scholar 

  52. S. Deka, P.A. Joy, J. Nanosci. Nanotechnol. 8, 3955–3958 (2008). https://doi.org/10.1166/jnn.2008.201

    Article  CAS  PubMed  Google Scholar 

  53. O.M. Lemine, M. Bououdina, M. Sajieddine, A.M. Al-Saie, M. Shafi, A. Khatab, M. Al-hilali, M. Henini, Physica B 406, 1989–1994 (2011). https://doi.org/10.1016/j.physb.2011.02.072

    Article  CAS  ADS  Google Scholar 

  54. A. Singh, S. Suri, P. Kumar, B. Kaur, A.K. Thakur, V. Singh, J. Alloys Compd. 764, 599–615 (2018). https://doi.org/10.1016/j.jallcom.2018.06.071

    Article  CAS  Google Scholar 

  55. R. Rameshbabu, R. Ramesh, S. Kanagesan, A. Karthigeyan, S. Ponnusamy, J. Mater. Sci. Mater. Electron. 24, 4279–4283 (2013). https://doi.org/10.1007/s10854-013-1397-6

    Article  CAS  Google Scholar 

  56. P. Yadav, A. Pandey, B. Khan, R. Biswal, A. Fahad, P. Kumar, M.K. Singh, Mater. Chem. Phys. 309, 128424 (2023). https://doi.org/10.1016/j.matchemphys.2023.128424

    Article  CAS  Google Scholar 

  57. C. Zeljka, R. Srdan, J. Stevan, S. Sonja, A. Kapor, Process. Appl. Ceram. 2, 53–56 (2008). https://doi.org/10.2298/PAC0801053C

    Article  Google Scholar 

  58. B. Khan, A. Kumar, P. Yadav, G. Singh, U. Kumar, A. Kumar, M.K. Singh, J. Mater. Sci. Mater. Electron. 32(13), 18012–18027 (2021). https://doi.org/10.1007/s10854-021-06344-0

    Article  CAS  Google Scholar 

  59. B. Khan, M.K. Singh, A. Kumar, A. Pandey, S. Dwivedi, U. Kumar, S. Ramawat, S. Kukreti, A. Dixit, S.C. Roy, J. Alloys Compd. 893, 162225 (2022). https://doi.org/10.1016/j.jallcom.2021.162225

    Article  CAS  Google Scholar 

  60. R. Biswal, P. Yadav, A. Fahad, B. Khan, P. Kumar, M.K. Singh, Mater. Today: Proceed. 82, 255–262 (2023). https://doi.org/10.1016/j.matpr.2023.01.183

    Article  CAS  Google Scholar 

  61. Q. Hang, Z. **ng, X. Zhu, M. Yu, Y. Song, J. Zhu, Z. Liu, Ceram. Int. 38, S411–S414 (2012). https://doi.org/10.1016/j.ceramint.2011.05.022

    Article  CAS  Google Scholar 

  62. T.A. Baset, M. Elzayat, S. Mahrous, Int. J. Polymer Sci. 4, 5–6 (2016). https://doi.org/10.1155/2016/1707018

    Article  CAS  Google Scholar 

  63. B. Khan, M.K. Singh, P. Yadav, A. Kumar, G. Singh, P. Kumar, Mater. Chem. Phys. 290, 126642 (2022). https://doi.org/10.1016/j.matchemphys.2022.126642

    Article  CAS  Google Scholar 

  64. M. Guan, Y. Xuan, Y. Gao, Y. Liu, S. Zhang, J. Mater. Sci. 57, 7056–7067 (2022). https://doi.org/10.1007/s10853-022-06968-5

    Article  CAS  ADS  Google Scholar 

  65. N. Sivakumar, A. Narayanasamy, B. Jeyadevan, R.J. Joseyphus, C. Venkateswaran, J. Phys. D Appl. Phys. 41, 245001 (2008). https://doi.org/10.1088/0022-3727/41/24/245001

    Article  CAS  ADS  Google Scholar 

  66. M.A. Almessiere, B. Unal, A.D. Korkmaz, S.E. Shirsath, A. Baykal, Y. Slimani, M.A. Gondal, U. Baig, A.V. Trukhanov, J. Market. Res. 15, 969–983 (2021). https://doi.org/10.1016/j.jmrt.2021.08.049

    Article  CAS  Google Scholar 

  67. R.D. Balikile, A.S. Roy, S.C. Nagaraju, G. Ramgopal, J. Mater. Sci. Mater. Electron. 28, 7368–7375 (2017). https://doi.org/10.1007/s10854-017-6425-5

    Article  CAS  Google Scholar 

  68. L. Chauhan, A.K. Shukla, K. Sreenivas, Ceram. Int. 41, 8341–8351 (2015). https://doi.org/10.1016/j.ceramint.2015.03.014

    Article  CAS  Google Scholar 

  69. M. Dult, R.S. Kundu, J. Hooda, S. Murugavel, R. Punia, N. Kishore, J. Non Cryst. Solids 423–424, 1–8 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.05.021

    Article  CAS  ADS  Google Scholar 

  70. H. Slimi, A. Oueslati, A. Aydi, Appl. Phys. A 125, 510 (2019). https://doi.org/10.1007/s00339-019-2801-8

    Article  CAS  ADS  Google Scholar 

  71. L.T. Mei, H.I. Hsiang, W.H. Hsu, J. Am. Ceram. Soc. 97, 3918–3925 (2014). https://doi.org/10.1111/jace.13243

    Article  CAS  Google Scholar 

Download references

Funding

For the DST Inspire Fellowship, Rutam Biswal acknowledges DST, New Delhi. We appreciate the financial support provided to Centre of Materials Sciences under the FIST Programme by DST (Grant No. SR/FST/PSI-216/2016).

Author information

Authors and Affiliations

Authors

Contributions

RB: Synthesis, Writing original draft, Conceptualization, Data curation and Formal analysis. PY: Formal analysis. PK: Characterization and Formal analysis. MKS: Conceptualization, editing, Formal analysis and supervision.

Corresponding author

Correspondence to Manoj K. Singh.

Ethics declarations

Conflict of interest

The authors affirm that they do not have any competing interests that are pertinent to the subject matter of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, R., Yadav, P., Kumar, P. et al. Synthesis, Structural, Dielectric, Magnetic and Magnetodielectric Properties of Graphene Quantum Dots (GQDs) Decorated ZnFe2O4 Hybrid Nanocomposite (GQD-ZHN). J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-023-02976-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02976-3

Keywords

Navigation