Log in

Green Synthesis of Silver Nanoparticles from Caralluma tuberculata Extract and its Antibacterial Activity

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The plant extracts were applied for synthesis of Ag-nanoparticles and expected such biological processes benefit from advantages like eco-friendly, cost-effective, and safe for human use. Accordingly, polyphenol compounds and antioxidant properties of this understudy plant extract was initially qualified and quantified by GC-Mass and subsequently its ability for silver nanoparticle (AgNP) biosynthesis was examined. Consequently, under study (ethanol) extract was exposed to various content of AgNO3 solution over 0, 2.5, 5, 7.5, 10 and 15 mM for 24, 48, 72 and 96 h to search best operational conditions for AgNPs production, while sampling were done every 24 h monitoring initial absorption with UV–Vis spectroscopy. The peak with center at 460 nm emerged from surface plasmon resonance of AgNPs which is good indication of successful formation of AgNPs. The nanoparticles were characterized by DLS, SEM, TEM, XRD, and FTIR. Which reveal its spherical, shape and average diameter of 32 nm. Antioxidant activity tests showed that the half-maximal inhibitory concentration (IC50) in the C. tuberculata extract was 4.722 mg/ml. Antimicrobial activity of the AgNPs was tested by measurement of inhibition zone around discs modified with AgNPs in cultures of S. aureus, B. cereus, P. aeruginosa and E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O.V. Salata, Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2(1), 3 (2004)

    Article  Google Scholar 

  2. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275(1), 177–182 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. P.S. Basavarajappa, S.B. Patil, N. Ganganagappa, K.R. Reddy, A.V. Raghu, C.V. Reddy, Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrog. Energy. 45(13), 7764–7778 (2020)

    Article  CAS  Google Scholar 

  4. R. Cai, Y. Du, D. Yang, G. Jia, B. Zhu, B. Chen, W. Chen, Free-standing 2D nanorafts by assembly of 1D nanorods for biomolecule sensing. Nanoscale. 11(25), 12169–12176 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R. Gao, X. Qin, T. Fan, R. Xu, H. Wu, Z. Wang, W. Cai, Influence of IrO2 addition on magnetoelectric properties of Ni 0.5 Zn 0.5 Fe2O4/Ba 0.8 Sr 0.2 TiO3 composite ceramics. J. Mater. Sci. Mater. Electron. 31(3), 2436–2445 (2020)

    Article  CAS  Google Scholar 

  6. B. Khodashenas, H.R. Ghorbani, Synthesis of silver nanoparticles with different shapes. Arab. J. Chem. 12(8), 1823–1838 (2019)

    Article  CAS  Google Scholar 

  7. C.V. Reddy, I.N. Reddy, K. Ravindranadh, K.R. Reddy, N.P. Shetti, D. Kim, T.M. Aminabhavi, Copper-doped ZrO2 nanoparticles as high-performance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation. J. Environ. Manage. 260, 110088 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Coll. Surf B Biointerfaces (2019). https://doi.org/10.1016/j.colsurfb.2019.03.013

    Article  Google Scholar 

  9. O. Choi, K.K. Deng, N.-J. Kim, L. Ross Jr., R.Y. Surampalli, Z. Hu, The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42(12), 3066–3074 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. A.M. Fayaz, K. Balaji, P. Kalaichelvan, R. Venkatesan, Fungal based synthesis of silver nanoparticles—an effect of temperature on the size of particles. Coll. Surf. B. Biointerfaces. 74(1), 123–126 (2009)

    Article  Google Scholar 

  11. S. Ghojavand, M. Madani, J. Karimi, Green synthesis, characterization and antifungal activity of silver nanoparticles using stems and flowers of Felty germander. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01449-1

    Article  Google Scholar 

  12. N. Pugazhenthiran, S. Anandan, G. Kathiravan, N.K.U. Prakash, S. Crawford, M. Ashokkumar, Microbial synthesis of silver nanoparticles by Bacillus sp. J. Nanopart. Res. 11(7), 1811 (2009)

    Article  CAS  Google Scholar 

  13. J. **e, J.Y. Lee, D.I. Wang, Y.P. Ting, Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1(5), 429–439 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. A.K. Singh, R. Tiwari, V. Kumar, P. Singh, S.R. Khadim, A. Tiwari, R. Asthana, Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential. J. Photochem. Photobiol. B. 166, 202–211 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. G. Mahendran, B.R. Kumari, Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. fruit extracts. Food Sci. Hum. Wellness 5(4), 207–218 (2016)

    Article  Google Scholar 

  16. M.I. Rashid, L.H. Mujawar, Z.A. Rehan, H. Qari, J. Zeb, T. Almeelbi, I.M. Ismail, One-step synthesis of silver nanoparticles using Phoenix dactylifera leaves extract and their enhanced bactericidal activity. J. Mol. Liq. 223, 1114–1122 (2016)

    Article  CAS  Google Scholar 

  17. K. Jadhav, D. Dhamecha, D. Bhattacharya, M. Patil, Green and ecofriendly synthesis of silver nanoparticles: characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J. Photochem. Photobiol. B 155, 109–115 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. E. Abdel-Sattar, N.G. Shehab, C. Ichino, H. Kiyohara, A. Ishiyama, K. Otoguro, H. Yamada, Antitrypanosomal activity of some pregnane glycosides isolated from Caralluma species. Phytomed. 16(6–7), 659–664 (2009)

    Article  CAS  Google Scholar 

  19. M. Soltanipour, Medicinal plants of the geno protected area. Pajouhesh-Va-Sazandegi Fall 18, 27–37 (2005)

    Google Scholar 

  20. N. Ahmad, S. Sharma, M.K. Alam, V. Singh, S. Shamsi, B. Mehta, A. Fatma, Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B. Biointerfaces 81(1), 81–86 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. H.C. Dutt, S. Singh, B. Avula, I.A. Khan, Y.S. Bedi, Pharmacological review of Caralluma R. Br. with special reference to appetite suppression and anti-obesity. J. Med. Food. 15(2), 108–119 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. A. Pothig, S. Ahmed, H.C. Winther-Larsen, S. Guan, P.J. Altmann, J. Kudermann, O.A. Hogmoen Astrand, Antimicrobial activity and cytotoxicity of Ag (I) and Au (I) pillarplexes. Front. Chem. 6, 584 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  23. E. Rodriguez-Leon, R. Iniguez-Palomares, R.E. Navarro, R. Herrera-Urbina, J. Tanori, C. Iniguez-Palomares, A. Maldonado, Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett. 8(1), 318 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  24. J. Poodineh, A. Khazaei Feizabad, A. Nakhaee, Antioxidant Activities of Caralluma tuberculata on Streptozotocin-Induced Diabetic Rats. Drug Dev. Res. 76(1), 40–47 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. L. Sun, J. Zhang, X. Lu, L. Zhang, Y. Zhang, Evaluation to the antioxidant activity of total flavonoids extract from persimmon (Diospyros kaki L.) leaves. Food Chem. Toxicol. 49(10), 2689–2696 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. S.-Y. Mok, M.J. Choi, J. Kim, E.J. Cho, S. Lee, Antioxidant activity of the methanolic extract of the newly generated vegetable, baemuchae (xBrassicoraphanus). Food Chem. Toxicol. 50(3–4), 848–853 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. A.H. El-Ghorab, M. Nauman, F.M. Anjum, S. Hussain, M. Nadeem, A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J. Agric. Food Chem. 58(14), 8231–8237 (2010)

    Article  CAS  PubMed  Google Scholar 

  28. H.-L. Siow, C.-Y. Gan, Extraction, identification, and structure–activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds (Cuminum cyminum). J. Funct. Foods. 22, 1–12 (2016)

    Article  CAS  Google Scholar 

  29. A.D. Dwivedi, K. Gopal, Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A. Physicochem. Eng. Asp. 369(1–3), 27–33 (2010)

    Article  CAS  Google Scholar 

  30. D. Inbakandan, R. Venkatesan, S.A. Khan, Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905). Colloids Surf. B. Biointerfaces. 81(2), 634–639 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. D. Elumalai, P. Kaleena, K. Ashok, A. Suresh, M. Hemavathi, Green synthesis of silver nanoparticle using Achyranthes aspera and its larvicidal activity against three major mosquito vectors. Eng. Agric. Environ. Food. 9(1), 1–8 (2016)

    Article  Google Scholar 

  32. S. Soman, J. Ray, Silver nanoparticles synthesized using aqueous leaf extract of Ziziphus oenoplia (L.) Mill: characterization and assessment of antibacterial activity. J. Photochem. Photobiol. B. 163, 391–402 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. J. Karimi, S. Mohsenzadeh, Plant synthesis of silver nanoparticles by Achillea wilhelmsii Pharmaceutical plant. Razi J. Med. Sci. 20(111), 64–69 (2013)

    Google Scholar 

  34. S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275(2), 496–502 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. S. Khorrami, A. Zarrabi, M. Khaleghi, M. Danaei, M. Mozafari, Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomed. 13, 8013 (2018)

    Article  CAS  Google Scholar 

  36. L. Zang, J. Qiu, X. Wu, W. Zhang, E. Sakai, Y. Wei, Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind. Eng. Chem. Res. 53(9), 3448–3454 (2014)

    Article  CAS  Google Scholar 

  37. K. Kathiresan, S. Manivannan, M. Nabeel, B. Dhivya, Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Coll. Surf. B. Biointerfaces. 71(1), 133–137 (2009)

    Article  CAS  Google Scholar 

  38. G. Singhal, R. Bhavesh, K. Kasariya, A.R. Sharma, R.P. Singh, Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanopart. Res. 13(7), 2981–2988 (2011)

    Article  CAS  Google Scholar 

  39. M. Yilmaz, H. Turkdemir, M.A. Kilic, E. Bayram, A. Cicek, A. Mete, B. Ulug, Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana. Mater. Chem. Phys. 130(3), 1195–1202 (2011)

    Article  CAS  Google Scholar 

  40. F.A. Cunha, K.R. Maia, E.J.J. Mallman, M.D.C.D.S. Cunha, A.A.M. Maciel, I.P.D. Souza, P.B.A. Fechine, Silver nanoparticles-disk diffusion test against Escherichia coli isolates. Rev. Inst. Med. Trop. Sao Paulo (2016). https://doi.org/10.1590/S1678-9946201658073

    Article  PubMed  PubMed Central  Google Scholar 

  41. S.-H. Kim, H.-S. Lee, D.-S. Ryu, S.-J. Choi, D.-S. Lee, Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39(1), 77–85 (2011)

    CAS  Google Scholar 

  42. D. Paredes, C. Ortiz, R. Torres, Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157: H7 and methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Nanomed. 9, 1717 (2014)

    Google Scholar 

  43. S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by Behbahan Khatam Alanbia University of Technology. We thank K. Shashok (AuthorAID in the Eastern Mediterranean) for improving the use of English in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Damoun Razmjoue or Javad Karimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, Z., Razmjoue, D. & Karimi, J. Green Synthesis of Silver Nanoparticles from Caralluma tuberculata Extract and its Antibacterial Activity. J Inorg Organomet Polym 30, 4606–4614 (2020). https://doi.org/10.1007/s10904-020-01586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01586-7

Keywords

Navigation