Log in

Luminescence Properties of Dual Valence Eu Doped Nano-crystalline BaF2 Embedded Glass-ceramics and Observation of Eu2+ → Eu3+ Energy Transfer

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Europium doped glass-ceramics containing BaF2 nano-crystals have been prepared by using the controlled crystallization of melt-quenched glasses. X-ray diffraction and transmission electron microscopy have confirmed the presence of cubic BaF2 nano-crystalline phase in glass matrix in the ceramized samples. Incorporation of rare earth ions into the formed crystalline phase having low phonon energy of 346 cm−1 has been demonstrated from the emission spectra of Eu3+ ions showing the transitions from upper excitation states 5DJ (J = 1, 2, and 3) to ground states for the glass-ceramics samples. The presence of divalent europium ions in glass and glass-ceramics samples is confirmed from the dominant blue emission corresponding to its 5d-4f transition under an excitation of 300 nm. Increase in the reduction of trivalent europium (Eu3+) ions to divalent (Eu2+) with the extent of ceramization is explained by charge compensation model based on substitution defect mechanisms. Further, the phenomenon of energy transfer from Eu2+ to Eu3+ ion by radiative trap** or re-absorption is evidenced which increases with the degree of ceramization. For the first time, the reduction of Eu3+ to Eu2+ under normal air atmospheric condition has been observed in a BaF2 containing oxyfluoride glass-ceramics system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bae JS, Juong JH, Yi S-S, Park J-C (2003) Improved photoluminescence of pulsed-laser-ablated Y2O3:Eu3+ thin-film phosphors by Gd substitution. Appl Phys Lett 82(21):3629–3631

    Article  CAS  Google Scholar 

  2. Wang X-X, Wang J, Shi J-X, Su Q, Gong M-L (2007) Intense red-emitting phosphors for LED solid-state lighting. Mater Res Bull 42(9):1669–1673

    Article  CAS  Google Scholar 

  3. Zhao X, Wang X, Chen B, Meng Q, Di W, Ren G, Yang Y (2007) Novel Eu3+-doped red-emitting phosphor Gd2Mo3O9 for white-light-emitting-diodes (WLEDs) applications. J Alloys Compd 433(1–2):352–355

    Article  CAS  Google Scholar 

  4. Yang HM, Shi JX, Gong ML (2005) A novel red-emitting phosphor Ca2SnO4:Eu3+. J Solid State Chem 178(3):917–920

    Article  CAS  Google Scholar 

  5. Rao RP, Devine DJ (2000) RE-activated lanthanide phosphate phosphors for PDP applications. J Lumin 87–89:1260–1263

    Article  Google Scholar 

  6. Poloman A (1997) Erbium implanted thin film photonic materials. J Appl Phys 82(1):1–39

    Article  Google Scholar 

  7. Oomen EWJL, van Dongen AMA (1989) Europium (III) in oxide glasses: Dependence of the emission spectrum on glass composition. J Non-Crystalline Solids 111(2–3):205–213

    Article  CAS  Google Scholar 

  8. Dorenbos P (2003) Energy of the first 4f7–4f65d transition of Eu2+ in inorganic compounds. J Lumin 104(4):239–260

    Article  CAS  Google Scholar 

  9. Poort SHM, Reijhoudt HM, van der Kuip HOT, Janssen W, Blasse G (1996) Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row. J Alloys Compd 241(1–2):75–81

    Article  CAS  Google Scholar 

  10. Kim JS, Jeon PE, Park YH, Choi JC, Park HL (2004) White-light generation through ultraviolet-emitting diode and white-emitting phosphors. Appl Phys Lett 85(17):3696–3698

    Article  CAS  Google Scholar 

  11. Chen L-T, Hwang C-S, Chen I-G, Chang S-J (2006) Chromaticity of inhomogeneous broadening effect on CaxSr1-xAl2O4: Eu2+. J Alloy Compd 426(1–2):395–399

    CAS  Google Scholar 

  12. Hirata GA, Ramos FE, McKittrick J (2005) Development of luminescent materials with strong UV-blue absorption. Opt Mater 27(7):1301–1304

    Article  CAS  Google Scholar 

  13. Gong X, Wu P, Chan W, Chen W (2000) The dependence of conductivity of cellulose, silk and wool on their water content. J Phys Chem Solids 16(1–2):115–121

    Article  Google Scholar 

  14. Bapat VN (1977) Thermoluminescence process in CaSO4:Eu. J Phys C: Solid State Phys 10(16):L465–L467

    Article  CAS  Google Scholar 

  15. Qiu J, Kojima K, Miura T, Mitsuyu T, Hirao K (1999) Infrared femtosecond laser pulse induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass. Opt Lett 24(11):786–788

    Article  PubMed  CAS  Google Scholar 

  16. Lian Z, Wang J, Lv YH, Wang SB, Su Q (2007) The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO–B2O3–P2O5 glasses. J Alloys Compd 430(1–2):257–261

    Article  CAS  Google Scholar 

  17. Luo Q, Qiao X, Fan X, Liu S, Yang H, Zhang X (2008) Reduction and luminescence of Europium ions in glass ceramics containing SrF2 nanocrystals. J Non-Crystalline Solids 354(40–41):4691–4694

    Article  CAS  Google Scholar 

  18. Luo Q, Fan X, Qiao X, Yang H, Wang M (2009) Eu2+ doped glass-ceramics containing BaF2 nanocrystals as a potential blue phosphor for UV-LED. J Am Ceram Soc 92(4):942–944

    Article  CAS  Google Scholar 

  19. Mortier M, Goldner P, Chateau C, Genotelle M (2001) Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions. J Alloys Compd 323–324:245–249

    Article  Google Scholar 

  20. Wang Y, Ohwaki J (1993) New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl Phys Lett 63(24):3268–3270

    Article  CAS  Google Scholar 

  21. Dejneka MJ (1998) Transparent oxyfluoride glass-ceramics. MRS Bull 23:57–62

    CAS  Google Scholar 

  22. Dejneka MJ (1998) The luminescence and structure of novel oxyfluoride glass-ceramics. J Non-Cryst Solids 239(1–3):149–155

    Article  CAS  Google Scholar 

  23. Honma T, Kusatsugu M, Komatsu T (2009) Synthesis of LaF3 nanocrystals by laser-induced Nd3+ atom heat processing in oxyfluoride glasses. Mater Chem Phys 113(1):124–129

    Article  CAS  Google Scholar 

  24. Chen D, Wang Y, Yu Y, Ma E, Bao F, Hu Z, Cheng Y (2006) Influence of Er3+ content on structure and upconversion emission of oxyfluoride glass ceramics containing CaF2 nanocrystals. Mater Chem Phys 95(2–3):264–269

    Article  CAS  Google Scholar 

  25. Biswas K, Sontakke AD, Ghosh J, Annapurna K (2010) Enhanced blue emission from transparent oxyfluoride glass-ceramics containing Pr3+:BaF2 nanocrystals. J Am Ceram Soc 93(4):1010–1017

    Article  CAS  Google Scholar 

  26. Peng MY, Pei ZW, Hong GY, Su Q (2003) Study on the reduction of Eu3+ → Eu2+ in Sr4Al14O25:Eu prepared in air atmosphere. Chem Phys Lett 371(1–2):1–6

    Article  CAS  Google Scholar 

  27. Youngman RE, Sen S (2004) The nature of fluorine in amorphous silica. J Non-Cryst Solids 337(2):182–186

    Article  CAS  Google Scholar 

  28. Wang C, Peng M, Jiang N, Jiang X, Zhao C, Qiu J (2007) Tuning the Eu luminecsnence in glass materials synthesized in air by adjusting glass composition. Mater Lett 61(17):3608–3611

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors would like to thank Prof. I. Manna, Director, CGCRI for his kind encouragement and permission to publish this work that was carried out in an In-house project No. OLP-0288. One of us (Mr.A.D.S.) is thankful to the BRNS-DAE for the award of Junior Research Fellowship to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Annapurna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, K., Sontakke, A.D., Sen, R. et al. Luminescence Properties of Dual Valence Eu Doped Nano-crystalline BaF2 Embedded Glass-ceramics and Observation of Eu2+ → Eu3+ Energy Transfer. J Fluoresc 22, 745–752 (2012). https://doi.org/10.1007/s10895-011-1010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-1010-4

Keywords

Navigation