Log in

New Advances in Fluorogenic Anion Chemosensors

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The development of anion chemosensors is an area of recent interest. We make here a comprehensive review of new advances on anion chemosensing, reported in the literature during the year 2004. The review follows a classification of the sensing systems based on design principles. It comprises: the binding site-signalling subunit approach, the displacement approach and the use of fluoro-chemodosimeters. The first two approximations are based on the use of a suitable anion coordination site coupled with a signalling unit which signals the anion coordination process via changes in its fluorescence behaviour. The two basic subunits are covalently linked in the binding site-signalling subunit approach and not in the displacement approach. In both approaches the fluorescence variation is reversible. The third way to the development of fluorogenic chemosensors is the use of chemodosimeters (also called reagents or reactands) that work usually through irreversible chemical reactions coupled with drastic changes in the fluorescence emission behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Scheerder, J. F. J. Engbersen, and D. N. Reinhoudt (1996). Synthetic receptors for anion complexation. Recl. Trav. Chim. Pays-Bas 115, 307–320.

    Google Scholar 

  2. F. P. Schmidtchen and M. Berger (1997). Artificial organic host molecules for anions. Chem. Rev. 97, 1609–1646.

    Google Scholar 

  3. P. D. Beer and D. K. Smith (1997). Anion binding and recognition by inorganic based receptors. Prog. Inorg. Chem. 46, 1–96.

    Google Scholar 

  4. M. M. G. Antonisse and D. N. Reinhoudt (1998). Neutral anion receptors: Design and application. Chem. Commun. 443–448.

  5. P. D. Beer and P. A. Gale (2001). Anion recognition and sensing: The state of the art and future perspectives. Angew. Chem. Int. Ed. 40, 486–516.

    Google Scholar 

  6. P. A. Gale (2000). Anion coordination and anion-diercted assembly: Highlights from 1997 and 1998. Coord. Chem. Rev. 199, 181–233.

    Google Scholar 

  7. P. A. Gale (2001). Anion receptor chemistry: Highlights from 1999. Coord. Chem. Rev. 213, 79–128.

    Google Scholar 

  8. P. A. Gale (2003). Anion and ion-pair receptor chemistry: Highlights from 2000 and 2001. Coord. Chem. Rev. 240, 191–221.

    Google Scholar 

  9. L. Fabbrizzi, M. Licchelli, G. Rabaioli, and A. Taglietti (2000). The design of luminescent sensors for anions and ionisable analytes. Coord. Chem. Rev. 205, 85–108.

    Google Scholar 

  10. P. D. Beer (1998). Transition-metal receptor systems for the selective recognition and sensing of anionic guest species. Acc. Chem. Res. 31, 71–80.

    Google Scholar 

  11. P. D. Beer and J. Cadman, (2000). Electrochemical and optical sensing of anions by transition metal based receptors. Coord. Chem. Rev. 205, 131–155.

    Google Scholar 

  12. R. Martínez-Máñez and F. Sancenón (2003). Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476.

    Google Scholar 

  13. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice (1997). Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566.

    Google Scholar 

  14. T. Gunnlaugsson, A. P. Davis, G. M. Hussey, J. Tierney, and M. Glynn (2004). Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors. Org. Biomol. Chem. 2, 1856–1863.

    Google Scholar 

  15. Z.-Y. Zeng, Y.-B. He, J.-L. Wu, L.-H. Wei, X. Liu, L.-Z. Meng, and X. Yang (2004). Synthesis of two branched fluorescent receptors and their binding properties for dicarboxylate anions. Eur. J. Org. Chem. 2888–2893.

  16. Q.-Y. Chen and C. F. Chen (2004). A new fluorescent as well as chromogenic chemosensor for anions based on an anthracene carbamate derivative. Tetrahedron Lett. 45, 6493–6496.

    Google Scholar 

  17. M. T. Albelda, J. Aguilar, S. Alves, R. Aucejo, P. Díaz, C. Lodeiro, J. C. Lima, E. García-España, F. Pina, and C. Soriano (2003). Potentiometric, NMR, and fluorescence-emission studies on the binding of adenosine 5′-triphosphate (ATP) by open-chain polyamine receptors containing naphthylmethyl and/or anthrylmethyl groups. Helv. Chim. Acta 86, 3118–3135.

    Google Scholar 

  18. K. J. Wallace, W. J. Belcher, D. R. Turner, K. F. Syed, and J. W. Steed (2003). Slow anion exchange, conformational equilibria, and fluorescent sensing in venus flytrap aminopyridinium-based anion hosts. J. Am. Chem. Soc. 125, 9699–9715.

    Google Scholar 

  19. S. K. Kim, N. J. Singh, S. J. Kim, H. G. Kim, J. K. Kim, J. W. Lee, K. S. Kim, and J. Yoon (2003). New fluorescent photoinduced electron transfer chemosensor for the recognition of H2PO4. Org. Lett. 5, 2083–2086.

    Google Scholar 

  20. J. Yoon, S. K. Kim, K. N. Singh, J. W. Lee, Y. J. Yang, K. Chellappan, and K. S. Kim (2004). Highly effective fluorescent sensor for H2PO4. J. Org. Chem. 69, 581–583.

    Google Scholar 

  21. J. Y. Kwon, N. J. Singh, H. N. Kim, S. K. Kim, K. S. Kim, and J. Yoon (2004). Fluorescent GTP-sensing in aqueous solution of physiological pH. J. Am. Chem. Soc. 126, 8892–8893.

    Google Scholar 

  22. A. Ojida, Y. Mito-oka, M. Inoue, and I. Hamachi (2002). First artificial receptors and chemosensors toward phosphorylated peptide in aqueous solution. J. Am. Chem. Soc. 124, 6256–6258.

    Google Scholar 

  23. A. Ojida, Y. Mito-oka, K. Sada, and I. Hamachi (2004). Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors. J. Am. Chem. Soc. 126, 2454–2463.

    Google Scholar 

  24. X. Qian and F. Liu (2003). Promoting effects of the hydroxymethyl group on the fluorescent signalling recognition of anions by thioureas. Tetrahedron Lett. 44, 795–799.

    Google Scholar 

  25. S.-Y. Liu, Y.-B. He, J.-L. Wu, L.-H. Wei, H.-J. Qin, L.-Z. Meng, and L. Hu (2004). Calix[4]arenes containing thiourea and amide moieties: Neutral receptors towards α,ω-dicarboxylate anions. Org. Biomol. Chem. 2, 1582–1586.

    Google Scholar 

  26. F. Otón, F. Tárraga, M. D. Velasco, A. Espinosa, and P. Molina (2004). A new fluoride selective electrochemical and fluorescent chemosensor based on a ferrocene-naphthalene dyad. Chem. Commun. 1658–1659.

  27. G. Xu and M. A. Tarr (2004). A novel fluoride sensor based on fluorescence enhancement. Chem. Commun. 1050–1051.

  28. E. J. Cho, J. W. Moon, S. W. Ko, J. Y. Lee, S. K. Kim, J. Yoon, and K. C. Nam (2003). A new fluoride selective fluorescent as well as chromogenic chemosensor containing a naphthalene urea derivative. J. Am. Chem. Soc. 125, 12376–12377.

    Google Scholar 

  29. J. Y. Lee, E. J. Cho, S. Mukamel, and K. C. Nam (2004). Efficient fluoride-selective fluorescent host: Experiment and theory. J. Org. Chem. 69, 943–950.

    Google Scholar 

  30. S.-I. Kondo, M. Nagamine, and Y. Yano (2003). Synthesis and anion recognition properties of 8,8′-dithioureido-2,2′-binaphthalene. Tetrahedron Lett. 44, 8801–8804.

    Google Scholar 

  31. Y. Kubo, M. Kato, Y. Misawa, and S. Tokita (2004). A fluorescence-active 1,3-bis(isothiouronium)-derived naphthalene exhibiting versatile binding modes toward oxoanions in aqueous MeCN solution: New methodology for sensing oxoanions. Tetrahedron Lett. 45, 3769–3773.

    Google Scholar 

  32. X. Zhang, L. Guo, F.-Y. Wu, and Y.-B. Jiang (2003). Development of fluorescent sensing of anions under excited-state intermolecular proton transfer signaling mechanism. Org. Lett. 5, 2667– 2670.

    Google Scholar 

  33. C.-F. Chen and Q.-Y. Chen (2004). A tetra-sulfonamide derivative bearing two dansyl groups designed as a new fluoride selective fluorescent chemosensor. Terahedron. Lett. 45, 3957–3960.

    Google Scholar 

  34. R. Miao, Q.-Y. Zheng, C.-F. Chen, and Z.-T. Huang (2004). A C-linked peptidocalix[4]arene bearing four dansyl groups: A highly selective fluorescence chemosensor for fluoride ions. Tetrahedron Lett. 45, 4959–4962.

    Google Scholar 

  35. T. Gunnlaugsson, P. E. Kruger, T. C. Lee, R. Parkesh, F. M. Pfeffer, and G. M. Hussey (2003). Dual responsive chemosensors for anions: The combination of fluorescent PET (photoinduced electron transfer) and colorimetric chemosensors in a single molecule. Tetrahedron Lett. 44, 6575–6578.

    Google Scholar 

  36. D. H. Lee, S. Y. Kim, and J.-I. Hong (2004). A fluorescent pyrophosphatesensor with high selectivity over ATP in water. Angew. Chem. Int. Ed. 43, 4777–4780.

    Google Scholar 

  37. Y. Kaneyiko, R. Naganawa, and H. Tao (2004). Fluorescence detection of ATP based on the ATP-mediated aggregation of pyrene-appended boronic acid on a polycation. Chem. Commun. 1006– 1007.

  38. H. Abe, Y. Mawatari, H. Teraoka, K. Fujimoto, and M. Inouye (2004). Synthesis and molecular recognition of pyrenophanes with polycationic or amphiphilic functionalities: Artificial plate-shaped cavitant incorporating arenes and nucleotides in water. J. Org. Chem. 69, 495–504.

    Google Scholar 

  39. L.-J. Kuo, J.-H. Liao, C.-T. Chen, C.-H. Huang, C.-S. Chen, and J.-M. Fang (2003). Two-arm ferrocene amide compounds: Synclinal conformations for selective sensing of dihydrogen phosphate ion. Org. Lett. 5, 1821–1824.

    Google Scholar 

  40. R. Pohl, D. Aldakov, P. Kubát, K. Jursíková, M. Marquez, and P. Anzenbacher Jr. (2004). Strategies toward improving the performance of fluorescence-based sensors for inorganic anions. Chem. Commun. 1282–1283.

  41. J. Ren, Q. Wang, D. Qu, X. Zhao, and H. Tian (2004). New fluoride-selective red fluorescent chemosensors based on perylene derivatives. Chem. Lett. 33, 974–975.

    Google Scholar 

  42. J. Ren, X.-L. Zhao, Q.-C. Wang, C.-F. Ku, D.-H. Qu, C. P. Chang, and H. Tian (2005). New fluoride fluorescent chemosensors based on perylene derivatives linked by urea. Dyes Pigments 64, 193–200.

    Google Scholar 

  43. S. Arimori, M. G. Davidson, T. M. Fyles, T. G. Hibbert, T. D. James, and G. I. Kociok-K¨hn (2004). Synthesis and structural characterisation of the first bis(bora)calixarene: A selective, bidentate, fluorescent fluoride sensor. Chem. Commun. 1640–1641.

  44. L.-L. Zhou, H. Sun, H.-P. Li, H. Wang, X.-H. Zhang, S.-K. Wu, and S.-T. Lee (2004). A novel colorimetric and fluorescent anion chemosensor based on the flavone quasi-crown ether-metal complex. Org. Lett. 6, 1071–1074.

    Google Scholar 

  45. V. Amendola, L. Fabbrizzi, and E. Monzani (2004). A concave fluorescent sensor for anions based on 6-methoxy-1-methylquinolinium. E. Chem. Eur. J. 10, 76–82.

    Google Scholar 

  46. A. Kovalchuk, J. L. Bricks, G. Reck, K. Rurack, B. Schulz, A. Szumna, and H. Weiß hoff (2004). A charge transfer-type fluorescent molecular sensor that “lights up” in the visible upon hydrogen bond-assisted complexation of anions. Chem. Commun. 1946– 1947.

  47. H. Tong, L. Wang, X. **g, and F. Wang (2003). “Turn-on” conjugated polymer fluorescent chemosensor for fluoride ion. Macromolecules 36, 2584–2586.

    Google Scholar 

  48. L. Basabe-Desmonts, J. Beld, R. S. Zimmerman, J. Hernando, P. Mela, M. F. García Parajó, N. F. van Hulst, A. van den Bergh, D. N. Reinhoudt, and M. Crego-Calama (2004). A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass. J. Am. Chem. Soc. 126, 7293–7299.

    Google Scholar 

  49. J. L. Sessler, J. M. Davis, V. Král, T. Kimbrough, and V. Lynch (2003). Water soluble sapphyrins: Potential fluorescent phosphate anion sensors. Org. Biomol. Chem. 1, 4113–4123.

    Google Scholar 

  50. A. Ojida, M. Inoue, Y. Mito-oka, and I. Hamachi (2003). Cross-linking strategy for molecular recognition nad fluorescent sensing of a multi-phosphorylated peptide in aqueous solution. J. Am. Chem. Soc. 125, 10184–10185.

    Google Scholar 

  51. B. García-Acosta, X. Albiach-Martí, E. García, L. Gil, R. Martínez-Máñez, K. Rurack, F. Sancenón, and J. Soto (2004). Coordinative and electrostatic forces in action: From the design of differential chromogenic anion sensors to selective carboxylate recognition. Chem. Commun. 774–775.

  52. S.-S. Sun, A. J. Lees, and P. Y. Zavalij (2003). Highly sensitive luminescent metal-complex receptors for anions through charge-assited amide hydrogen bonding. Inorg. Chem. 42, 3445–3453.

    Google Scholar 

  53. D. Parker (2000). Luminescent lanthanide sensors for pH, pO2 and selected anions. Coord. Chem. Rev. 205, 109–130.

    Google Scholar 

  54. P. Atkinson, Y. Bretonniere, and D. Parker (2004). Chemoselective signalling of selected phospho-anions using lanthanide luminescence. Chem. Commun. 438–439.

  55. Y. Bretonniere, M. J. Cann, D. Parker, and R. Slater (2004). Design, synthesis and evaluation of ratiometric probes for hydrogencarbonate based on europium emission. Org. Biomol. Chem. 2, 1624–1632.

    Google Scholar 

  56. C. Li and W.-T. Wong (2004). Luminescent heptadentate Tb3+ complex with pendant aza-15-crown-5 showing recognition of lactate and salicylate in aqueous solution. Tetrahedron Lett. 45, 6055–6058.

    Google Scholar 

  57. Z. Lin, M. Wu, M. Sch¨ferling, and O. S. Wolfbeis (2004). Fluorescent imaging of citrate and other intermediates in the citric acid cycle. Angew. Chem. Int. Ed. 43, 1735–1738.

    Google Scholar 

  58. R. K. Mahajan, I. Kaur, R. Kaur, S. Uchida, A. Onimaru, S. Shinoda, and H. Tsukube (2003). Anion receptor functions of lanthanide tris(β-diketonate) complexes: Naked eye detection and ion-selective electrode determination of Cl anion. Chem. Commun. 2238– 2239.

  59. M. J. Perry (1995). In J. R. Birch and E. S. Lennox (Eds.), Monoclonal Antibodies: Principles and Applications, Wiley-Liss, New York, pp. 107–120.

    Google Scholar 

  60. S. L. Wiskur, H. Aït-Haddou, J. J. Lavigne, and E. V. Anslyn (2001). Teaching old indicators new tricks. Acc. Chem. Res. 34, 963–972.

    Google Scholar 

  61. M. Boiocchi, M. Bonizzoni, L. Fabbrizzi, G. Piovani, and A. Taglietti (2004). A dimetallic cage with long ellipsoidal cavity for the fluorescent detection of dicarboxylate anions in water. Angew. Chem. Int. Ed. 43, 3847–3852.

    Google Scholar 

  62. K. Niikura and E. V. Anslyn (2003). Triton X-100 enhances ion-pair-driven molecular recognition in aqueous media. Further work on a chemosensor for inositol triphosphate. J. Org. Chem. 68, 10156–10157.

    Google Scholar 

  63. T.-H. Kim and T. M. Swager (2003). A fluorescent self-amplifying wavelenght-responsive sensory polymer for fluoride ion. Angew. Chem. Int. Ed. 42, 4803–4806.

    Google Scholar 

  64. F. Tanaka, N. Mase, and C. F. Barbas, III (2004). Determination of cysteine concentration by fluorescence increase: Reaction of cysteine with a fluorogenic aldehyde. Chem. Commun. 1762– 1763.

  65. A. Coskun and E. U. Akkaya (2004). Difluorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions. Tetrahedron Lett. 45, 4947–4949.

    Google Scholar 

  66. R. Badugu, J. R. Lakowicz, and C. D. Geddes (2005). Cyanide-sensitive fluorescent probes. Dyes Pigments 64, 49–55.

    Google Scholar 

  67. N. DiCesare and J. R. Lakowicz (2002). New sensitive and selective fluorescent probes for fluoride using boronic acids. Anal. Biochem. 301, 111–116.

    Google Scholar 

  68. R. Bagudu, J. R. Lakowicz, and C. D. Geddes (2004). Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard. Anal. Chim. Acta 522, 9–17.

    Google Scholar 

  69. R. Badugu, J. R. Lakowicz, and C. D. Geddes (2004). Excitation and emission wavelenght ratiometric cyanide-sensitive probes for physiological sensing. Anal. Biochem. 327, 82–90.

    Google Scholar 

  70. J. V. Ros-Lis B. García, D. Jiménez, R. Martínez-Máñez, F. Sancenón, J. Soto, F. Gonzalvo, and M. C. Valldecabres (2004). Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their application to the detection of biorelevant thiols. J. Am. Chem. Soc. 126, 4064–4065.

    Google Scholar 

  71. J. A. Cruz-Aguado, Y. Chen, Z. Zhang, N. H. Elowe, M. A. Brook, and J. D. Brennan (2004). Ultrasensitive ATP detection using firefly luciferase entrapped in sugar-modified sol-gel-derived silica. J. Am. Chem. Soc., 126, 6878–6879.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Martínez-Máñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Máñez, R., Sancenón, F. New Advances in Fluorogenic Anion Chemosensors. J Fluoresc 15, 267–285 (2005). https://doi.org/10.1007/s10895-005-2626-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2626-z

Key Words

Navigation