Log in

Quantitative Effects of Cyanogenesis on an Adapted Herbivore

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plant cyanogenesis means the release of gaseous hydrogen cyanide (HCN) in response to cell damage and is considered as an effective defense against generalist herbivores. In contrast, specialists are generally believed not to be affected negatively by this trait. However, quantitative data on long-term effects of cyanogenesis on specialists are rare. In this study, we used lima bean accessions (Fabaceae: Phaseolus lunatus L.) with high quantitative variability of cyanogenic features comprising cyanogenic potential (HCNp; concentration of cyanogenic precursors) and cyanogenic capacities (HCNc; release of gaseous HCN per unit time). In feeding trials, we analyzed performance of herbivorous Mexican bean beetle (Coleoptera: Coccinellidae: Epilachna varivestis Mulsant) on selected lines characterized by high (HC-plants) and low HCNp (LC-plants). Larval and adult stages of this herbivore feed on a narrow range of legumes and prefer cyanogenic lima bean as host plant. Nevertheless, we found that performance of beetles (larval weight gain per time and body mass of adult beetles) was significantly affected by lima bean HCNp: Body weight decreased and developmental period of larvae and pupae increased on HC-plants during the first generation of beetles and then remained constant for four consecutive generations. In addition, we found continuously decreasing numbers of eggs and larval hatching as inter-generational effects on HC-plants. In contrast to HC-plants, constantly high performance was observed among four generations on LC-plants. Our results demonstrate that Mexican bean beetle, although preferentially feeding on lima bean, is quantitatively affected by the HCNp of its host plant. Effects can only be detected when considering more than one generation. Thus, cyanide-containing precursors can have negative effects even on herbivores adapted to feed on cyanogenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal, A. A., and Kurashige, N. S. 2003. A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J. Chem. Ecol. 29:1403–1415.

    Article  PubMed  CAS  Google Scholar 

  • Agrawal, A. A., and Van Zandt, P. A. 2003. Ecological play in the coevolutionary theatre: genetic and environmental determinants of attack by a specialist weevil on milkweed. J. Ecol. 91:1049–1059.

    Article  Google Scholar 

  • Amelot, M. E. A., Núñes, J. L. Á., Duarte, L., and Oliveros-Bastidas, A. 2006. Hydrogen cyanide release during feeding of generalist and specialist lepidopteran larvae on a cyanogenic plant, Passiflora capsularis. Physiol. Entomol. 31:307–315.

    Article  CAS  Google Scholar 

  • Anaya, A. L., Mata, R., Sims, J. J., González-Coloma, A., Cruz-Ortega, R., Guadaño, A., Hernández-Bautista, B. E., Midland, S. L., Ríos, G., and Gómez-Pompa, A. 2003. Allelochemical potential of Callicarpa acuminata. J. Chem. Ecol. 29:2761–2776.

    Article  PubMed  CAS  Google Scholar 

  • Ballhorn, D. J., and Lieberei, R. 2006. Oviposition choice of Mexican bean beetle (Epilachna varivestis) depends on host plants cyanogenic capacity. J. Chem. Ecol. 32:1861–1865.

    Article  PubMed  CAS  Google Scholar 

  • Ballhorn, D. J., Lieberei, R., and Ganzhorn, J. U. 2005. Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: The importance of quantitative data. J. Chem. Ecol. 31:1445–1473.

    Article  PubMed  CAS  Google Scholar 

  • Ballhorn, D. J., Heil, M., and Lieberei, R. 2006. Phenotypic plasticity of cyanogenesis in lima bean Phaseolus lunatus—Activity and activation of β-glucosidase. J. Chem. Ecol. 32:261–275.

    Article  PubMed  CAS  Google Scholar 

  • Barrigossi, J. A. F., Young, L. J., Crawford, C. A. G., Hein, G. L., and Higley, L. G. 2001. Spatial and probability distribution of Mexican bean beetle (Coleoptera: Coccinellidae) egg mass populations in dry bean. Environ. Entomol. 30:244–253.

    Article  Google Scholar 

  • Baudoin, J. P., Barthelemy, Y. J., and Ndungo, V. 1991. Variability of cyanide contents in the primary and secondary gene pools of the lima bean, Phaseolus lunatus L. FAO/IBPGR. Plant Genet. Resour. Newsl. 85:5–9.

    Google Scholar 

  • Beesley, S. G., Compton, S. G., and David, A. J. 1985. Rhodanese in insects. J. Chem. Ecol. 11:45–50.

    Article  CAS  Google Scholar 

  • Benson, W. W., Brown, K. S. Jr., and Gilbert, L. E. 1976. Coevolution of plants and herbivores: passion flower butterflies. Evolution 29:659–680.

    Article  Google Scholar 

  • Bowers, M. D., and Stamp, N. E. 1997. Fate of host-plant iridoid glycosides in lepidopteran larvae of Nymphalidae and Arctiidae. J. Chem. Ecol. 23:2955–2965.

    CAS  Google Scholar 

  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Conn, E. E. 1981. Cyanogenic glycosides, The Biochemistry of Plants, vol. 7. pp. 479–499, in E. E. Conn (ed.). Academic, New York.

    Google Scholar 

  • Davis, R. H., and Nahrstedt, A. 1987. Biosynthesis of cyanogenic glucosides in butterflies and moths—effective incorporation of 2-methyl-propanenitrile and 2-methylbutanenitrile into linamarin and lotaustralin by Zygaena and Heliconius species (Lepidoptera). Insect Biochem. 17:689–693.

    Article  CAS  Google Scholar 

  • Dobler, S., Daloze, D., and Pasteels, J. M. 1998. Sequestration of plant compounds in a leaf beetle’s defensive secretions: cardenolides in Chrysochus. Chemoecology 8:111–118.

    Article  CAS  Google Scholar 

  • Dover, B. A., Noblet, R., Moore, F., and Culbertson, D. 1988. An improved artificial diet for Mexican bean beetles based on host preference. J. Agric. Entomol. 5:79–86.

    Google Scholar 

  • Engler, H. S., Spencer, K. C., and Gilbert, L. E. 2000. Insect metabolism: Preventing cyanide release from leaves. Nature 406:144–145.

    Article  PubMed  CAS  Google Scholar 

  • Farrar, R. R. Jr., Barbour, J. D., and Kennedy, G. G. 1989. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82:593–598.

    Google Scholar 

  • Flanders, R. V. 1984. Comparison of bean varieties currently being used to culture the Mexican bean beetle (Coleoptera: Coccinellidae). Environ. Entomol. 13:995–999.

    Google Scholar 

  • Fox, C. W., Mclennan, L. A., and Mousseau, T. A. 1995. Male body size affects female lifetime reproductive success in a seed beetle. Anim. Behav. 50:281–284.

    Article  Google Scholar 

  • Frehner, M., and Conn, E. E. 1987. The linamarin β-glucosidase in Costa Rica wild bean (Phaseolus lunatus L.) is apoplastic. Plant Physiol. 84:1296–1300.

    PubMed  CAS  Google Scholar 

  • Haukioja, E. 2003. Putting the insect into the birch-insect interaction. Oecologia 136:161–168.

    Article  PubMed  Google Scholar 

  • Jallow, M. F. A., Dugassa-Gobena, D., and Vidal, S. 2003. Indirect interaction between an unspecialized endophytic fungus and a polyphagous moth. Basic Appl. Ecol. 5:183–191.

    Article  Google Scholar 

  • Janzen, D. H. 1977. How southern cowpea weevil larvae (Bruchidae: Callosobruchus maculatus) die on nonhost seeds. Ecology 58:921–927.

    Article  Google Scholar 

  • Jones, D. A. 1988. Cyanogenesis in animal-plant interactions. Ciba F. Symp. 140:151–170.

    CAS  Google Scholar 

  • Lapidus, J. B., Cleary, R. W., Davidson, R. H., Fisk, F. W., and Augustine, M. G. 1963. Chemical factors influencing host selection by the Mexican bean beetle, Epilachna varivestis Muls. J. Agric. Food Chem. 11:462–463.

    Article  CAS  Google Scholar 

  • Miguel, A. A., and Alberto, O. B. 2005. Kinetics of the natural Evolution of hydrogen cyanide in plants in neotropical Pteridium arachnoideum and its ecological significance. J. Chem. Ecol. 31:315–331.

    Article  CAS  Google Scholar 

  • Møller, B. L., and Seigler, D. S. 1999. Biosynthesis of cyanogenic glucosides, cyanolipids and related compounds, Plant Amino Acids. pp. 563–609, in B. K. Singh (ed.). Dekker, New York.

    Google Scholar 

  • Ojeda-Avila, T., Woods, H. A., and Raguso, R. A. 2003. Effects of dietary variation on growth, composition, and maturation of Manduca sexta (Sphingidae: Lepidoptera). J. Insect Physiol. 49:293–306.

    Article  PubMed  CAS  Google Scholar 

  • Patton, C. A., Ranney, T. G., Burton, J. D., and Wallenbach, J. F. 1997. Natural pest resistance of Prunus taxa to feeding by adult Japanese beetles—role of endogenous allelochemicals in host plant resistance. J. Am. Soc Hortic. Sci. 122:668–672.

    Google Scholar 

  • Poulton, J. E. 1990. Cyanogenesis in plants. Plant Physiol. 94:401–405.

    Article  PubMed  CAS  Google Scholar 

  • Rausher, M. D. 1996. Genetic analysis of coevolution between plants and their natural enemies. Trends Genet. 12:212–217.

    Article  PubMed  CAS  Google Scholar 

  • Selmar, D., Lieberei, R., Biehl, B., and Voigt, J. 1987. Hevea linamarase, a non-specific β-glucosidase. Plant Physiol. 83:557–563.

    PubMed  CAS  Google Scholar 

  • Selmar, D., Lieberei, R., Conn, E. E., and Biehl, B. 1989. Alpha-Hydroxynitrile Lyase in Hevea brasiliensis and ist significance for rapid cyanogenesis. Plant Physiol. 75:97–101.

    Article  CAS  Google Scholar 

  • Simpson, S. J., and Raubenheimer, D. 2001. The geometric analysis of nutrient-allelochemical interactions: a case study using locusts. Ecology 82:422–439.

    Google Scholar 

  • Slansky, F., and Wheeler, G. S. 1992. Caterpillars’ compensatory feeding response to diluted nutrients leads to toxic allelochemical dose. Entomol. Exp. Appl. 65:171–186.

    Article  Google Scholar 

  • Solomonson, L. P. 1988. Regulation of nitrate reductase by NADH and cyanide. Biochim. Biophys. Acta 334:297–308.

    Google Scholar 

  • Tikkanen, O. P., and Julkunen-Tiitto, R. 2003. Phenological variation as protection against defoliating insects: The case study Quercus robur and Operophtera brumata. Oecologia 136:244–251.

    Article  PubMed  Google Scholar 

  • Urbańska, A., Leszczyńki, B., Matok, H., and Dixon, A. F. G. 2002. Cyanide detoxifying enzymes of bird cherry-oat aphid. Electronic Journal of Polish Agricultural Universities, Biology, vol. 5, issue 2. http://www.ejpau.media.pl

  • Van Dam, N. M., Hadwich, K., and Baldwin, I. T. 2000. Induced responses in Nicotiana attenuata affect behaviour and growth of the specialist herbivore Manduca sexta. Oecologia 122:371–379.

    Article  Google Scholar 

  • Van Der Meijden, E. 1996. Plant defence, an evolutionary dilemma: Contrasting effects of (specialist and generalist) herbivores and natural enemies. Entomol. Exp. Appl. 80:307–310.

    Article  Google Scholar 

  • Viette, M., Tettamanti, C., and Saucy, F. 2000. Preference for acyanogenic white clover (Trifolium repens) in the vole Arvicola terrestris: II. Generalization and further investigations. J. Chem. Ecol. 26:101–122.

    Article  CAS  Google Scholar 

  • Waldbauer, G. P. 1968. The consumption and utilization of food by insects. Adv. Insect Physiol. 5:229–289.

    Article  Google Scholar 

  • Zagrobelny, M., Bak, S., Rasmussen, A. V., Jørgensen, B., Naumann, C. M., and Møller, B. 2004. Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65:293–306.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Christoph Reisdorff and Dr. Helmut Kassner for assistance and helpful comments and thank the “Institute of Plant Genetics and Crop Plant Research (IPK)” in Gatersleben, Germany, for providing seed material of P. lunatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Ballhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballhorn, D.J., Heil, M., Pietrowski, A. et al. Quantitative Effects of Cyanogenesis on an Adapted Herbivore. J Chem Ecol 33, 2195–2208 (2007). https://doi.org/10.1007/s10886-007-9380-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9380-4

Keywords

Navigation