Log in

Hard Clams (Mercenaria mercenaria) Evaluate Predation Risk Using Chemical Signals from Predators and Injured Conspecifics

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Hard clams, Mercenaria mercenaria, are sessile, filter-feeding organisms that are heavily preyed upon by blue crabs, which find their clam prey using chemical cues. Clams may evade blue crabs by reducing their pum** (feeding) behavior when a threat is perceived. The purpose of this study was to determine the type of signals that clams use to detect consumers. Clams decreased their pum** time in response to blue crabs and blue crab effluent, but not to crab shells, indicating that chemical signals and not mechanical cues mediated the response of clams to distant predators. Because predator diet can influence prey evaluation of predatory threats, we compared clam responses to blue crabs fed a steady diet of fish, clams, or that were starved prior to the experiment. In addition, we used injured clams as a stimulus because many organisms detect predators by sensing the odor of injured con- or heterospecifics. Clams reduced feeding in response to injured conspecifics and to blue crabs that had recently fed. Clams reacted similarly to fed crabs, regardless of their diet, but did not respond to starved blue crabs. Because blue crabs are generalist predators and the threat posed by these consumers is unrelated to the crab's diet, we should expect clam reactions to blue crabs to be independent of the crab's diet. The failure of clams to react to starved blue crabs likely increases their vulnerability to these consumers, but clam responses to injured conspecifics may constitute a strategy that allows animals to detect an imminent threat when signals emanating from blue crabs are not detectable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aukema, B. H. and Raffa, K. F. 2004. Does aggregation benefit bark beetles by diluting predation? Links between a group-colonization strategy and the absence of emergent multiple predator effects. Ecol. Entomol. 29:129–138.

    Article  Google Scholar 

  • Brown, G. E. and Dreier, V. M. 2002. Predator inspection and attack cone avoidance in the characin fish: the effects of predator diet and prey experience. Anim. Behav. 63:1175–1181.

    Article  Google Scholar 

  • Brown, G. E., Paige, J. A., and Godin, J. G. J. 2000. Chemically mediated predator inspection behavior in the absence of predation visual cues by a characin fish. Anim. Behav. 60:315–321.

    Article  PubMed  Google Scholar 

  • Bryer, P. J., Mirza, R. S., and Chivers D. P. 2001. Chemosensory assessment of predation risk by slimy sculpins, Cottus cognathus: Responses to alarm, disturbance, and predator cues. J. Chem. Ecol. 27:533–546.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, S. R., Kitchell, J. F., and Hodgson, J. R. 1985. Cascading tropic interactions and lake productivity. BioScience 35:634–639.

    Article  Google Scholar 

  • Chivers, D. P. and Mirza, R. S. 2001. Importance of predator diet cues in responses of larval wood frogs to fish and invertebrate predators. J. Chem. Ecol. 27:45–51.

    Article  PubMed  CAS  Google Scholar 

  • Chivers, D. P. and Smith, R. J. F. 1998. Chemical alarm signaling in aquatic predator–prey interactions: a review and prospectus. Ecoscience 5:338–352.

    Google Scholar 

  • Chivers, D. P., Wisenden, B. D., and Smith R. J. F. 1996. Damselfly larvae learn to recognize predators from chemical cues in the predator's diet. Anim. Behav. 52:315–320.

    Article  Google Scholar 

  • Coen, L. D. and Heck, K. L., Jr. 1991. The interactive effects of siphon-nip** and habitat on bivalve (Mercenaria mercenaria (L.)) growth in a subtropical seagrass (Halodule wrightii Aschers) meadow. J. Exp. Mar. Biol. Ecol. 145:1–13.

    Article  Google Scholar 

  • Cote', I. M. and Jelnikar, E. 1999. Predator-induced clum** behavior in mussels (Mytilus edulis Linnaeus). J. Exp. Mar. Biol. Ecol. 235:201–211.

    Article  Google Scholar 

  • Crowl, T. A. and Covich, A. P. 1990. Predator-induced life history shifts in a freshwater snail. Science 247:949–951.

    Article  PubMed  Google Scholar 

  • Eggleston, D. B., Lipcius, R. N., and Hines, A. H. 1992. Density-dependent predation by blue crabs upon infaunal clam species with contrasting distribution and abundance patters. Mar. Ecol., Prog. Ser. 85:55–68.

    Article  Google Scholar 

  • Ferner, M. C. and Weissburg, M. J. 2005. Slow-moving predatory gastropods track prey odors in fast and turbulent flow. J. Exp. Biol. 208:809–819.

    Article  PubMed  Google Scholar 

  • Finelli, C. M., Pentcheff, N. D., Zimmer, R. K., and Wethey, D. S. 2000. Physical constraints on ecological process: a field test of odor-mediated foraging. Ecology 81:784–797.

    Google Scholar 

  • Fitzgibbon, C. D. 1990. Mixed species grou** in Thompson's and Grant's gazelles: the antipredator benefits. Anim. Behav. 39:1116–1126.

    Article  Google Scholar 

  • Hamilton, W. D. 1971. Geometry for the selfish herd. J. Theor. Biol. 31:295–311.

    Article  PubMed  CAS  Google Scholar 

  • Howe, N. R. and Harris, L. G. 1978. Transfer of the sea anemone pheromone, anthopluerine, by the nudibranch Aeolidia papillosa. J. Chem. Ecol. 4:551–561.

    Article  CAS  Google Scholar 

  • Irlandi, E. A. 1994. Large and small-scale effects of habitat structure on rates of predation: how percent coverage of seagrass affects rates of predation and siphon-nip** on an infaunal bivalve. Oecologia 98:176–183.

    Article  Google Scholar 

  • Irlandi, E. A. and Peterson, C. H. 1991. Modification of animal habitat by large plants: Mechanisms by which seagrasses influence clam growth. Oecologia 87:307–318.

    Article  Google Scholar 

  • Katz, L. B. and Dill, L. M. 1998. The scent of death: chemosensory assessment of predation risk by animals. Ecoscience 5:361–394.

    Google Scholar 

  • Leonard, G. H., Bertness, M. D., and Yund, P. O. 1999. Crab predation, waterborne cues, and inducible defenses in blue mussels, Mytilus edulis. Ecology 80:1–14.

    Google Scholar 

  • Lima, S. L. 1998. Nonlethal effects in the ecology of predator–prey interactions. BioScience 48:25–34.

    Article  Google Scholar 

  • Lima, S. L. 2002. Putting predators back into behavioral predator–prey interactions. Trends Ecol. Evol. 17:70–75.

    Article  Google Scholar 

  • Lima, S. L. and Dill, L. M. 1990. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68:619–640.

    Article  Google Scholar 

  • Mackie, A. M. and Shelton, R. G. J. 1972. A whole animal bioassay for the determination of food attractants of the lobster Homarus gammaus. Mar. Biol. 14:217–224.

    CAS  Google Scholar 

  • Madison, D. M., Sullivan, A. M., Maerz, J. C., McDarby, J. H., and Rohr, J. R. 2002. A complex, cross-taxon, chemical releaser of antipredator behavior in amphibians. J. Chem. Ecol. 28:2271–2282.

    Article  PubMed  CAS  Google Scholar 

  • Mathis, A. and Smith, R. J. F. 1993. Intraspecific and cross super-order responses to chemical alarm signals by brook stickleback. Ecology 74:2395–2404.

    Article  Google Scholar 

  • Menge, B. A. 2000. Top-down and bottom-up community regulation in marine rocky intertidal habitats. J. Exp. Mar. Biol. Ecol. 250:257–289.

    Article  PubMed  Google Scholar 

  • McIntosh, A. R. and Peckarsky, B. L. 1999. Criteria determining behavioural responses to multiple predators by a stream mayfly. Oikos 85:554–564.

    Article  Google Scholar 

  • Micheli, F. 1995. Behavioural plasticity in prey-size selectivity of the blue crab Callinectes sapidus feeding on bivalve prey. J. Anim. Ecol. 64, 63–74.

    Article  Google Scholar 

  • Micheli, F. 1997. Effects of predator foraging behavior on patterns of prey mortality in marine soft bottoms. Ecol. Monogr. 67:203–224.

    Google Scholar 

  • Millar, J. G. and Haynes, K. F. (eds.). 1998. Methods in Chemical Ecology, Volume 1: Chemical Methods. Kluwer Academic Publishers, Norwell, MA. 390 p.

  • Mirza, R. A. and Chivers, D. P. 2001. Do juvenile yellow perch use diet cues to assess the level of threat posed by intraspecific predators? Behaviour 138:1249–1258.

    Article  Google Scholar 

  • Nakaoka, M. 2000. Nonlethal effects of predators on prey populations: Predator-mediated change in bivalve growth. Ecology 81:1031–1045.

    Google Scholar 

  • Paine, R. T. 1966. Food web complexity and species diversity. Am. Nat. 103:65–75.

    Article  Google Scholar 

  • Peckarsky, B. L. 1996. Alternative predator avoidance syndromes of stream-dwelling mayfly larvae. Ecology 77:1888–1905.

    Article  Google Scholar 

  • Peterson, C. H. 1986. Quantitative allometry of gamete production by Mercenaria mercenaria into old age. Mar Ecol., Prog. Ser. 29:93–97.

    Article  Google Scholar 

  • Petranka, J. W. and Hays, L. 1998. Chemically-mediated avoidance of a predatory odonate (Anax junius) by American toad (Bufo americanus) and wood frog (Rana sylvatica) tadpoles. Behav. Ecol. Sociobiol. 42:23–271.

    Article  Google Scholar 

  • Petranka, J. W., Katz, L. B., and Sih, A. 1987. Predator–prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish. Anim. Behav. 35:420–425.

    Article  Google Scholar 

  • Powell, G. V. N. 1974. Experimental analysis of the social value of flocking by starlings (Sturnus vulgaris) in relation to predation and foraging. Anim. Behav. 22:501–505.

    Article  Google Scholar 

  • Schmitz, O. J. 1998. Direct and indirect effects of predation and predation risk in old-field interaction webs. Am. Nat. 151:327–342.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz, O. J., Beckerman, A. P., and O'Brien, K. M. 1997. Behaviorally-mediated trophic cascades: Effects of predation risk on food web interactions. Ecology 78:1388–1399.

    Article  Google Scholar 

  • Sih, A., Crowley, P., McPeek, M., Petranka, J., and Strothmeier, K. 1985. Predation, competition, and prey communities: a review of field experiments. Ann. Rev. Ecolog. Syst. 16:269–312.

    Article  Google Scholar 

  • Smee, D. L. and Weissburg, M. J. In press. Clamming up: environmental forces diminish the perceptive ability of bivalve prey. Ecology.

  • Smith, M. E. and Belk, M. C. 2001. Risk assessment in western mosquitofish (Gambusia affinis): Do multiple cues have additive effects? Behav. Ecol. Sociobiol. 51:101–107.

    Article  Google Scholar 

  • Sokal, R. R. and Rohlf, F. J. 1995. Biometry: The Principles and Practice of Statistics in Biological Research. 3rd edition. W. H. Freeman and Co., New York.

    Google Scholar 

  • Stabell, O. B. and Lwin, M. S. 1997. Predator-induced phenotypic changes in crucian carp are caused by chemical signals from conspecifics. Environ. Biol. Fisches 49:145–149.

    Google Scholar 

  • Sullivan, K. A. 1984. The advantages of social foraging in downy woodpeckers. Anim. Behav. 32:16–22.

    Article  Google Scholar 

  • Virnstein, R. W. 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58:1199–1217.

    Article  Google Scholar 

  • Walker, R. L. 1987. Hard clam, Mercenaria mercenaria (L.) populations of coastal Georgia. Georgia Marine Science Center, Technical Report Series 87-1, Athens.

  • Webster, D. R. and Weissburg, M. J. 2001. Chemosensory guidance cues in a turbulent odor plume. Limnol. Oceanogr. 46:1034–1047.

    CAS  Google Scholar 

  • Weissburg, M. J. and Zimmer-Faust, R. K. 1993. Life and death in moving fluids: hydrodynamic effects on chemosensory mediated predation. Ecology 74:1428–1443.

    Article  Google Scholar 

  • Weissburg, M. J., Ferner, M. C., Pisut, D. P., and Smee, D. L. 2002. Ecological consequences of chemically mediated prey perception. J. Chem. Ecol. 28:1953–1970.

    Article  PubMed  CAS  Google Scholar 

  • Werner, E. E. and Peacor, S. D. 2003. A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100.

    Article  Google Scholar 

  • Zimmer, R. K. and Butman, C. A. 2000. Chemical signaling processes in the marine environment. Biol. Bull. 198:168–187.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer-Faust, R. K. and Case, J. F. 1982. Organization of food search in the kelp crab, Pugettia producta (Randall). J. Exp. Mar. Biol. Ecol. 57:237–255.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank S. Smee, L. Smee, and J. Jackson for help in collecting animals in the field and M. Ferner for maintaining the SkIO flume. Funding for this project came from the NSF IGERT grant to the Georgia Institute of Technology and NSF grant OCE #0424673 to MJW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delbert L. Smee.

About this article

Cite this article

Smee, D.L., Weissburg, M.J. Hard Clams (Mercenaria mercenaria) Evaluate Predation Risk Using Chemical Signals from Predators and Injured Conspecifics. J Chem Ecol 32, 605–619 (2006). https://doi.org/10.1007/s10886-005-9021-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-005-9021-8

Key Words

Navigation