Log in

Hyperbolic Quasilinear Navier–Stokes Equations in \({\mathbb {R}}^2\)

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider a hyperbolic quasilinear version of the Navier–Stokes equations in \({\mathbb {R}}^2\), arising from using a Cattaneo type law instead of a Fourier law. These equations, which depend on a parameter \(\varepsilon \), are a way to avoid the infinite speed of propagation which occurs in the classical Navier–Stokes equations. We first prove the existence and uniqueness of solutions to these equations, and then exhibit smallness assumptions on the data, under which the solutions are global in time. In particular, these smallness assumptions disappear when \(\varepsilon \) vanishes, accordingly to the fact that the solutions of the 2D Navier–Stokes equations are global.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelhedi, B.: Global existence of solutions for hyperbolicNavier-Stokes equations in three spacedimensions. Asymptot. Anal. 112, 213–225 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Alinhac, S., Gérard, P.: Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels. InterEditions, Paris; Éditions du Centre National de la Recherche Scientifique (CNRS), Meudon, (1991)

  3. Brenier, Y., Natalini, R., Puel, M.: On a relaxation approximation of the incompressible Navier-Stokes equations. Proc. Am. Math. Soc. 132, 1021–1028 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carbonaro, B., Rosso, F.: Some remarks on a modified fluid dynamics equation. Rendiconti Del Circolo Matematico Di Palermo 2(XXX), 112–122 (1981)

    MATH  Google Scholar 

  5. Carrassi, M., Morro, A.: A modified Navier-Stokes equation and its consequences on sound dispersion. II Nuovo Cimento 9b, 321–342 (1972)

    Article  Google Scholar 

  6. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1949)

    MathSciNet  MATH  Google Scholar 

  7. Cattaneo, C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. C. R. Acad. Sci. Paris 247, 431–433 (1958)

    MathSciNet  MATH  Google Scholar 

  8. Chemin, J.-Y.: Fluides parfaits incompressibles, Astérisque No. 230, 177 p (1995)

  9. Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I. Arch. for Rat. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hachicha, I.: Global existence for a damped wave equation and convergence towards a solution of the Navier–Stokes problem. Nonlinear Anal. 96, 68–86 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. **, S., **n, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48, 235–276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Leray, J.: Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Matematica 63, 193–248 (1933)

    Article  MATH  Google Scholar 

  13. Paicu, M., Raugel, G.: Une perturbation hyperbolique des équations de Navier-Stokes, ESAIM Proceedings. Vol. 21 (2007) [Journées d’Analyse Fonctionnelle et Numérique en l’honneur de Michel Crouzeix], pp. 65–87

  14. Paicu, M., Raugel, G.: A hyperbolic singular perturbation of the Navier-Stokes equations in \({\bf R}^2\), manuscript, (2008)

  15. Racke, R., Saal, J.: Hyperbolic Navier-Stokes equations I: Local well-posedness. Evol. Equ. Control Theory 1, 195–215 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Racke, R., Saal, J.: Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evol. Equ. Control Theory 1, 217–234 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schöwe, A.: A quasilinear delayed hyperbolic Navier-Stokes system: global solution, asymptotics and relaxation limit. Methods Appl. Anal. 19, 99–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schöwe, A.: Blow-up results to certain hyperbolic model problems in fluid mechanics. Nonlinear Anal. 144, 32–40 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schöwz, A.: Global strong solution for large data to the hyperbolic Navier-Stokes equation, Arxiv: https://arxiv.org/abs/1409.7797 (2014)

  20. Tom, M.: Smoothing properties of some weak solutions of the Benjamin-Ono equation. Differ. Int. Equ. 3, 683–694 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Vernotte, P.: Les paradoxes de la théorie continue de l’équation de la chaleur. Comptes Rendus Acad. Sci. 246, 3154–3155 (1958)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Coulaud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In memory of Geneviève Raugel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulaud, O., Hachicha, I. & Raugel, G. Hyperbolic Quasilinear Navier–Stokes Equations in \({\mathbb {R}}^2\). J Dyn Diff Equat 34, 2749–2785 (2022). https://doi.org/10.1007/s10884-021-09978-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-09978-0

Navigation