Log in

Blue Emissive Carbon Quantum Dots (CQDs) from Bio-waste Peels and Its Antioxidant Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, Carbon Quantum Dots (CQDs) are synthesized from agro-waste Ananas comosus by facile hydrothermal treatment. The synthesized CQDs are characterized using powder X-ray diffraction analysis, Fourier-transform infrared, UV–Visible spectral analysis and quantum yield (QY) measurements. The formation of CQDs with a mean particle size of 2.4 nm is measured using HR-TEM analysis. The fluorescence properties of CQDs show strong blue emission radiation with a QY of 10.65%. Antioxidant assay of the CQDs were assessed against DPPH (2, 2-diphenyl-1-picrylhydrazyl), Super oxide anion radical scavenging, hydroxyl radical scavenging and hydrogen peroxide radical scavenging activities. The results suggest that agro-waste is also one of the promising materials for optical switching devices and also it have good medicinal value by extracting drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Roda, D. M. De Faveri, S. Giacosa, R. Dordoni, and M. Lambri (2016). Effect of pre-treatments on the saccharification of pineapple waste as a potential source for vinegar production. J. Clean. Prod. 112, 4477–4484. https://doi.org/10.1016/j.jclepro.2015.07.019.

    Article  CAS  Google Scholar 

  2. A. M. Goula and H. N. Lazarides (2015). Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: the cases of olive mill and pomegranate wastes. J. Food Eng. 167, 45–50. https://doi.org/10.1016/j.jfoodeng.2015.01.003.

    Article  CAS  Google Scholar 

  3. A. Schieber, F. C. Stintzing, and R. Carle (2001). By-products of plant food processing as a source of functional compounds - recent developments. Trends Food Sci. Technol. 12, 401–413. https://doi.org/10.1016/S0924-2244(02)00012-2.

    Article  CAS  Google Scholar 

  4. V. Oreopoulou and W. Russ, Utilization of By-Products and Treatment of Waste in the Food. (Springer, New York, 2007), p. 316.

    Book  Google Scholar 

  5. A. Abdullah and H. Mat (2008). Characterisation of solid and liquid pineapple waste. Reaktor 12, 48–52. https://doi.org/10.14710/reaktor.12.1.48-52.

    Article  Google Scholar 

  6. S. B. Imandi, V. V. R. Bandaru, S. R. Somalanka, S. R. Bandaru, and H. R. Garapati (2008). Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste. Bioresour. Technol. 99, 4445–4450. https://doi.org/10.1016/j.biortech.2007.08.071.

    Article  CAS  PubMed  Google Scholar 

  7. K. Tanaka, Z. D. Hilary, and A. Ishizaki (1999). Investigation of the utility of pineapple juice and pineapple waste material as low-cost substrate for ethanol fermentation by Zymomonas mobilis. J. Biosci. Bioeng. 87, 642–646. https://doi.org/10.1016/S1389-1723(99)80128-5.

    Article  CAS  PubMed  Google Scholar 

  8. D. Kumar, V. K. Jain, G. Shanker, and A. Srivastava (2003). Utilisation of fruits waste for citric acid production by solid state fermentation. Process Biochem. 38, 1725–1729. https://doi.org/10.1016/S0032-9592(02)00253-4.

    Article  CAS  Google Scholar 

  9. J. N. Nigam (2000). Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. J. Biotechnol. 80, 189–193. https://doi.org/10.1016/S0168-1656(00)00246-7.

    Article  CAS  PubMed  Google Scholar 

  10. S. Ketnawa, P. Chaiwut, and S. Rawdkuen (2012). Pineapple wastes: a potential source for bromelain extraction. Food Bioprod. Process. 90, 385–391. https://doi.org/10.1016/j.fbp.2011.12.006.

    Article  CAS  Google Scholar 

  11. P. G. Lozano-De-Gonzalez, D. M. Barrett, R. E. Wrolstad, and R. W. Durst (1993). Enzymatic browning inhibited in fresh and dried apple rings by pineapple juice. J. Food Sci. 58, 399–404. https://doi.org/10.1111/j.1365-2621.1993.tb04284.x.

    Article  CAS  Google Scholar 

  12. M. A. Hossain and S. M. M. Rahman (2011). Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res. Int. 44, 672–676. https://doi.org/10.1016/j.foodres.2010.11.036.

    Article  CAS  Google Scholar 

  13. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang (2015). The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8, 355–381. https://doi.org/10.1007/s12274-014-0644-3.

    Article  CAS  Google Scholar 

  14. D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. **e, X. **g, R. E. Haddad, H. Fan, and Z. Sun (2015). Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 4, 5294. https://doi.org/10.1038/srep05294.

    Article  CAS  Google Scholar 

  15. Yi. Zhang, Y. Wang, X. Feng, F. Zhang, Y. Yang, and X. Liu (2016). Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots. Appl. Surf. Sci. 387, 1236–1246. https://doi.org/10.1016/j.apsusc.2016.07.048.

    Article  CAS  Google Scholar 

  16. V. Lesnyak, N. Gaponik, and A. Eychmüller (2013). Colloidal semiconductor nanocrystals: the aqueous approach. Chem. Soc. Rev. 42, 2905–2929. https://doi.org/10.1039/C2CS35285K.

    Article  CAS  PubMed  Google Scholar 

  17. Z. Moslemi, E. Soheyli, M. H. Majles Ara, and R. Sahraei (2018). Facile preparation of yellow and red emitting ZnCdSeS quantum dots and their third-order nonlinear optical properties. J. Phys. Chem. Solids 120, 64–70. https://doi.org/10.1016/j.jpcs.2018.04.017.

    Article  CAS  Google Scholar 

  18. Z. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. Li, Qi. Zhang, S. E. Mohney, and J. Ruzyllo (2007). Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots. Nano Lett. 7, 3803–3807. https://doi.org/10.1021/nl072370s.

    Article  CAS  PubMed  Google Scholar 

  19. H. Li, X. He, Y. Liu, H. Huang, S. Lian, S. T. Lee, and Z. Kang (2011). One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon N. Y. 49, 605–609. https://doi.org/10.1016/j.carbon.2010.10.004.

    Article  CAS  Google Scholar 

  20. J. Shen, Y. Zhu, X. Yang, and C. Li (2012). Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699. https://doi.org/10.1039/c2cc00110a.

    Article  CAS  Google Scholar 

  21. A. Prasannan and T. Imae (2013). One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind. Eng. Chem. Res. 52, 15673–15678. https://doi.org/10.1021/ie402421s.

    Article  CAS  Google Scholar 

  22. B. Zhu, S. Sun, Y. Wang, S. Deng, G. Qian, M. Wang, and A. Hu (2013). Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. J. Mater. Chem. C 1, 580–586. https://doi.org/10.1039/C2TC00140C.

    Article  CAS  Google Scholar 

  23. T. Chatzimitakos, A. Kasouni, L. Sygellou, A. Avgeropoulos, A. Troganis, and C. Stalikas (2017). Two of a kind but different: luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta 175, 305–312. https://doi.org/10.1016/j.talanta.2017.07.053.

    Article  CAS  PubMed  Google Scholar 

  24. P. Surendran, A. Lakshmanan, G. Vinitha, G. Ramalingam, and P. Rameshkumar (2019). Facile preparation of high fluorescent carbon quantum dots from orange waste peels for nonlinear optical applications. Luminescence 35, 196–202. https://doi.org/10.1002/bio.3713.

    Article  CAS  PubMed  Google Scholar 

  25. Y. X. Sun, Z. W. He, X. B. Sun, and Z. D. Zhao (2013). Synthesis of water-soluble fluorescent carbon dots from a one-step hydrothermal method with potato. Adv. Mater. Res. 873, 770–776.

    Article  Google Scholar 

  26. W. Li, Z. Yue, C. Wang, W. Zhang, and G. Liu (2013). An absolutely green approach to fabricate carbon nanodots from soya bean grounds. RSC Adv. 3, 20662–20665. https://doi.org/10.1039/c3ra43330g.

    Article  CAS  Google Scholar 

  27. J. Zhou, Z. Sheng, H. Han, M. Zou, and C. Li (2012). Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater. Lett. 66, 222–224. https://doi.org/10.1016/j.matlet.2011.08.081.

    Article  CAS  Google Scholar 

  28. X. Wen, L. Shi, G. Wen, Y. Li, C. Dong, J. Yang, and S. Shuang (2015). Green synthesis of carbon nanodots from cotton for multicolor imaging, patterning, and sensing. Sens. Actuators B Chem. 221, 769–776. https://doi.org/10.1016/j.snb.2015.07.019.

    Article  CAS  Google Scholar 

  29. G. García-Rosales, L. C. Longoria-Gándara, S. Martínez-Gallegos, and J. González-Juárez (2013). Synthesis and characterization of carbon conditioned with iron nanoparticles using pineapple-peel. Adv. Nanopart. 2, 384–390. https://doi.org/10.4236/anp.2013.24053.

    Article  CAS  Google Scholar 

  30. S. Sharma, A. Umar, S. K. Mehta, and S. K. Kansal (2017). Fluorescent spongy carbon nanoglobules derived from pineapple juice: a potential sensing probe for specific and selective detection of chromium (VI) ions. Ceram. Int. 43, 7011–7019. https://doi.org/10.1016/j.ceramint.2017.02.127.

    Article  CAS  Google Scholar 

  31. A. L. Himaja, P. S. Karthik, B. Sreedhar, and S. P. Singh (2014). Synthesis of carbon dots from kitchen waste: conversion of waste to value added product. J. Fluoresc. 24, 1767–1773. https://doi.org/10.1007/s10895-014-1465-1.

    Article  CAS  PubMed  Google Scholar 

  32. I. Jirapornvaree, T. Suppadit, and A. Popan (2017). Use of pineapple waste for production of decomposable pots. Int. J. Recycl. Org. Waste Agric. 6, 345–350. https://doi.org/10.1007/s40093-017-0183-5.

    Article  Google Scholar 

  33. S. T. Chang, J. H. Wu, S. Y. Wang, P. L. Kang, N. S. Yang, and F. Y. Shyur (2001). Antioxidant activity of extracts from acacia confusa bark and heartwood. J. Agric. Food Chem. 49, 3420–3424.

    Article  CAS  Google Scholar 

  34. F. Wang, M. Kreiter, B. He, S. Pang, and C. Liu (2010). Synthesis of direct white-light emitting carbogenic quantum dots. Chem. Commun. 46, 3309–3311. https://doi.org/10.1039/c002206c.

    Article  CAS  Google Scholar 

  35. J. Y. Li, Y. Liu, Q. W. Shu, J. M. Liang, F. Zhang, X. P. Chen, X. Y. Deng, M. T. Swihart, and K. J. Tan (2017). One-pot hydrothermal synthesis of carbon dots with efficient up- and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay. Langmuir 33, 1043–1050. https://doi.org/10.1021/acs.langmuir.6b04225.

    Article  CAS  PubMed  Google Scholar 

  36. H. Lin, L. Ding, B. Zhang, and J. Huang (2018). Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid. R. Soc. Open Sci. 5, 172149. https://doi.org/10.1098/rsos.172149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, and S. K. Sahu (2017). Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ions and live cell imaging. Sens. Actuators B Chem. 242, 679–686. https://doi.org/10.1016/j.snb.2016.11.109.

    Article  CAS  Google Scholar 

  38. T. A. Tabish, F. A. Memon, D. E. Gomez, D. W. Horsell, and S. Zhang (2018). A facile synthesis of porous graphene for efficient water and wastewater treatment. Sci. Rep. 8, 1817. https://doi.org/10.1038/s41598-018-19978-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. P. **, J. Song, X. C. Wang, and X. ** (2018). Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant. J. Environ. Sci. 64, 181–189. https://doi.org/10.1016/j.jes.2017.06.018.

    Article  CAS  Google Scholar 

  40. S. Suresh, S. Karthikeyan, and K. Jayamoorthy (2016). FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. J. Sci. Adv. Mater. Devices 1, 343–350. https://doi.org/10.1016/j.jsamd.2016.08.004.

    Article  Google Scholar 

  41. S. Chandra, D. Laha, A. Pramanik, A. R. Chowdhuri, P. Karmakar, and S. K. Sahu (2016). Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe3+ions in cancer cells. Luminescence 31, 81–87. https://doi.org/10.1002/bio.2927.

    Article  CAS  PubMed  Google Scholar 

  42. C. Zheng, L. Huang, Q. Guo, W. Chen, W. Li, and H. Wang (2018). Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses. RSC Adv. 8, 10267–10276. https://doi.org/10.1039/C8RA00390D.

    Article  CAS  Google Scholar 

  43. S. Chandra, A. R. Chowdhuri, T. K. Mahto, A. Samui, and S. K. Sahu (2016). One-step synthesis of amikacin modified fluorescent carbon dots for the detection of Gram-negative bacteria like Escherichia coli. RSC Adv. 6, 72471–72478. https://doi.org/10.1039/C6RA15778E.

    Article  CAS  Google Scholar 

  44. S. Y. Lim, W. Shen, and Z. Gao (2015). Carbon quantum dots and their applications. Chem. Soc. Rev. 4, 362–381. https://doi.org/10.1039/C4CS00269E.

    Article  Google Scholar 

  45. T. T. Meiling, P. J. Cywiński, and I. Bald (2016). White carbon: fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis. Sci. Rep. 6, 28557. https://doi.org/10.1038/srep28557.

    Article  PubMed  PubMed Central  Google Scholar 

  46. K. Suzuki, L. Malfatti, M. Takahashi, D. Carboni, F. Messina, Y. Tokudome, M. Takemoto, and P. Innocenzi (2017). Design of carbon dots photoluminescence through organo-functional silane grafting for solid-state emitting devices. Sci. Rep. 7, 5469. https://doi.org/10.1038/s41598-017-05540-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. B. De and N. Karak (2013). A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv. 3, 8286–8290. https://doi.org/10.1039/c3ra00088e.

    Article  CAS  Google Scholar 

  48. M. Nishikimi, N. A. Rao, and K. Yagi (1972). The occurrence of superoxide anion in the reaction of reduced. Biochem. Biophys. Res. Commun. 46, 849–854. https://doi.org/10.1016/S0006-291X(72)80218-3.

    Article  CAS  PubMed  Google Scholar 

  49. B. Halliwell and J. M. C. Gutteridge (1981). Formation of a thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salt. FEBS Lett. 128, 347–352. https://doi.org/10.1016/0014-5793(81)80114-7.

    Article  CAS  PubMed  Google Scholar 

  50. L. Zhao, Y. Wang, and Y. Li (2019). Antioxidant activity of graphene quantum dots prepared in different electrolyte environments. Nanomaterials 9, 1708. https://doi.org/10.3390/nano9121708.

    Article  CAS  PubMed Central  Google Scholar 

  51. L. A. Chunduri, A. Kurdekar, S. Patnaik, B. V. Dev, T. M. Rattan, and V. Kamisetti (2016). Carbon quantum dots from coconut hust: evaluation for antioxidant and cytotoxic activity. Mater. Focus 5, 55–61. https://doi.org/10.1016/0014-5793(81)80114-7.

    Article  CAS  Google Scholar 

  52. Z. T. Rosenkrans, T. Sun, D. Jiang, W. Chen, T. E. Barnhart, Z. Zhang, C. A. Ferreira, X. Wang, J. W. Engle, P. Huang, and W. Cai (2020). Selenium-doped carbon quantum dots act as braod spectrum antioxidants for acute kidney injury management. Adv. Sci. 7, 2000420. https://doi.org/10.1002/advs.202000420.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author (Dr. G. Ramalingam & Dr. M. Biruntha) acknowledges the economic support from RUSA 2.0 Grant No.F.24-51/2014-U, Policy (TNMulti-Gen) Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muniyandi Biruntha or Gopal Ramalingam.

Ethics declarations

Conflict of interest

We declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajamanikandan, S., Biruntha, M. & Ramalingam, G. Blue Emissive Carbon Quantum Dots (CQDs) from Bio-waste Peels and Its Antioxidant Activity. J Clust Sci 33, 1045–1053 (2022). https://doi.org/10.1007/s10876-021-02029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02029-0

Keywords

Navigation