Log in

Cytotoxicity and Antimicrobial Properties of Photosynthesized Silver Chloride Nanoparticles Using Plant Extract from Stryphnodendron adstringens (Martius) Coville

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Stryphnodendron adstringens (Martius) Coville is a medicinal plant described as having pharmacological properties as anti-inflammatory and antimicrobial activities. Silver chloride nanoparticles (AgCl-NPs) have shown great potential for biomedical applications with efficient antimicrobial properties. Here, we report the photosynthesis of AgCl-NPs using plant extract from S. adstringens (SaAgCl-NPs) and their cytotoxic and antimicrobial activities. We photosynthesized SaAgCl-NPs nearly spherical with low heterogeneity in size and enveloped by an organic material layer responsible for colloidal stability. SaAgCl-NPs was non-cytotoxic against mammalian VERO cells; however, SaAgCl-NPs presented remarkable antifungal activity against the pathogenic yeast Cryptococcus neoformans (MIC80 of 0.32 µg/mL) the causative agent of human cryptococcosis. Notable antibacterial activity was observed against Gram-negative bacteria Pseudomonas aeruginosa (MIC80 of 2.56 µg/mL) e Serratia marcescens (MIC80 of 20.48 µg/mL) both microorganisms associated with a variety of human infections, in particular pneumonia. In contrast, Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis, microorganisms that cause pathologies as skin infections, were less susceptible to the SaAgCl-NPs both with MIC80 of 40.93 µg/mL. Thus, SaAgCl-NPs represents an organic–inorganic hybrid nanomaterial with very low cytotoxicity against mammalian cells and high antimicrobial efficiency against pathogenic microorganisms and may be explored as an alternative to antimicrobial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Forero (1972). Brittonia 24 (2), 143–147. https://doi.org/10.2307/2805864.

    Article  Google Scholar 

  2. E. A. Audi, D. P. Toledo, P. G. Peres, E. Kimura, W. K. V. Pereira, J. C. P. de Mello, C. Nakamura, W. Alves-do-Prado, R. K. N. Cuman, and C. A. Bersani-Amado (1999). Phytother. Res. 13 (3), 264–266.

    CAS  PubMed  Google Scholar 

  3. G. C. Lopes, A. C. C. Sanches, C. V. Nakamura, B. P. Dias Filho, L. Hernandes, and J. C. P. Mello (2005). J. Ethnopharmacol. 99 (2), 265–272.

    CAS  PubMed  Google Scholar 

  4. A. M. M. Felipe, V. P. Rincão, F. J. Benati, R. E. C. Linhares, K. J. Galina, C. E. de Toledo, G. C. Lopes, J. C. P. Mello, and C. Nozawa (2006). Biol. Pharm. Bull. 29 (6), 1092–1095.

    CAS  PubMed  Google Scholar 

  5. S. C. G. Pinto, F. G. Bueno, G. P. Panizzon, G. Morais, P. V. P. dos Santos, M. L. Baesso, E. V. S. L. de Mello, and J. C. P. de Mello (2015). Planta Med. 81 (1), 1090–1096.

    CAS  PubMed  Google Scholar 

  6. P. D. E. Mello, F. Petereit, and A. Nahrstedt (1996). Phytochemistry 41 (3), 807–813.

    Google Scholar 

  7. L. M. Ricardo and M. G. L. Brandão (2018). Springer Nat. 5, 431–437.

    Google Scholar 

  8. J. C. S. Lima, D. T. O. Martins, and P. T. de Souza (1998). Phytother. Res. 12, 218–220.

    Google Scholar 

  9. N. Durán, G. Nakazato, and A. B. Seabra (2016). Appl. Microbiol. Biotechnol. 100 (15), 6555–6570.

    PubMed  Google Scholar 

  10. E. Lima, R. Guerra, V. Lara, and A. Guzmán (2013). Chem. Cent. J. 7 (1), 7:11.

    Google Scholar 

  11. A. Tofanello, J. N. Araujo, V. M. Silva, J. A. P. Sato, F. M. Squina, I. L. Nantes, and W. Garcia (2017). Int. J. Biol. Macromol. 102 (1), 84–91.

    PubMed  Google Scholar 

  12. A. Tofanello, G. F. Cruz, J. N. Araújo, I. L. N. Cardoso, F. F. Ferreira, and W. Garcia (2018). J. Inorg. Org. Polym. Mater. 28 (5), 2056–2062.

    Google Scholar 

  13. J. N. Araújo, A. Tofanello, I. L. N. Cardoso, F. F. Ferreira, J. A. Souza, D. W. Lim, H. Kitagawa, and W. Garcia (2019). Colloids Surf. B 176, 47–54.

    Google Scholar 

  14. J. H. Kim, Y. C. Hong, and H. S. Uhm (2007). Surf. Coat. Technol. 201 (9–11), 5114–5120.

    CAS  Google Scholar 

  15. A. K. Gupta and M. Gupta (2005). Biomaterials 26 (18), 3995–4021.

    CAS  PubMed  Google Scholar 

  16. S. H. Wu, C. Y. Mou, and H. P. Lin (2013). Chem. Soc. Rev. 42 (9), 3862–3875.

    CAS  PubMed  Google Scholar 

  17. O. Gokcekaya, K. Ueda, K. Ogasawara, and T. Narushima (2018). Mater. Chem. Phys. J. 223 (1), 473–478.

    Google Scholar 

  18. R. Bigdelli, M. Shahnazari, E. Panahnejad, R. A. Cohan, A. Dashbolaghi, and V. Asgary (2019). Artif. Cells Nanomed. Biotechnol. 47 (1), 1603–1609.

    Google Scholar 

  19. D. Philip (2011). Spectrochim. Acta A 78 (1), 327–331.

    Google Scholar 

  20. V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Adv. Colloid Interface Sci. 145 (1–2), 83–96.

    CAS  PubMed  Google Scholar 

  21. S. Jayanthi, S. Shanthi, B. Vaseeharan, N. Gopi, M. Govindaranjan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. B 170 (1), 208–216.

    CAS  PubMed  Google Scholar 

  22. R. Sanghi and P. Verma (2009). Bioresour. Technol. 100 (1), 501–504.

    CAS  PubMed  Google Scholar 

  23. L. Hernandes, L. M. S. da Pereira, F. Palazzo, and J. C. P. de Mello (1996). Br. J. Pharm. Sci. 46 (3), 30–40.

    Google Scholar 

  24. M. A. Madureira, C. M. de Junior, G. C. Freire, L. C. Carezzato, L. M. P. de Campos, and I. G. Pedron (2019). Int. J. Dent. Med. 4 (3), 45–51.

    Google Scholar 

  25. L. Ehret-Sabatier, D. Loew, M. Goyffon, P. Fehlbaum, J. A. Hoffmann, A. van Dorsselaer, and P. Bulet (1996). J. Biol. Chem. 271 (47), 29537–29544.

    CAS  PubMed  Google Scholar 

  26. F. D. Silva, C. A. Rezende, D. C. Rossi, E. Esteves, F. H. Dyszy, S. Schreier, F. Gueiros-Filho, C. B. Campos, J. R. Pires, and S. Daffre (2009). J. Biol. Chem. 284 (50), 34735–34746.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. E. Chaparro-Aguirre, P. J. Segura-Ramírez, F. L. Alves, K. A. Riske, A. Miranda, and P. I. Silva Júnior (2019). Sci. Rep. 9, 13631.

    PubMed  PubMed Central  Google Scholar 

  28. T. Rajan and S. Muthukrishnana (2013). Asian J. Pharm. Clin. Res. 6, 271–273.

    Google Scholar 

  29. M. M. R. Tejada, J. D. G. Durán, A. O. Ortega, M. E. Jimenez, R. P. Carpio, and E. Chibowski (2002). Colloid Surf. B 24 (3–4), 297–308.

    Google Scholar 

  30. R. M. Silverstein, F. X. Webste, D. J. Kimle, and D. L. Brice, Spectrometric Identification of Organic Compounds. (Wiley, Chichester, 2015), p. 466.

    Google Scholar 

  31. H. S. Mansur, C. M. Sadahira, A. N. Souza, and A. A. P. Mansur (2008). Mater. Sci. Eng. C 28 (4), 539–548.

    CAS  Google Scholar 

  32. P. Kumar, R. Yuvakkumar, S. Vijayakumar, and B. Vaseeharan (2018). Mater. Chem. Phys. 220 (1), 402–408.

    CAS  Google Scholar 

  33. S. Oliver, H. Wagh, Y. Liang, S. Yang, and C. Boyer (2018). J. Mater. Chem. B 6 (24), 4124–4138.

    CAS  PubMed  Google Scholar 

  34. R. Bigdeli, M. Shahnazari, E. Panahnejad, R. A. Cohan, A. Dashbolaghi, and V. Asgary (2019). Artif. Cells Nanomed. Biotechnol. 47 (1), 1603–1609.

    CAS  PubMed  Google Scholar 

  35. Y. Cheng, F. Wang, C. Fang, J. Su, and L. Yang (2016). J. Alloys Compd. 658 (1), 684–688.

    CAS  Google Scholar 

  36. T. Zhang, L. Wang, Q. Chen, and C. Chen (2014). Yonsei Univ. Coll. Med. J. 55 (2), 283–291.

    CAS  Google Scholar 

  37. V. T. Barbosa, J. K. C. Souza, V. Alvino, M. R. Meneghetti, P. P. F. Rodriguez, R. E. Moreira, G. V. B. Paulino, M. F. Landell, I. D. B. Júnior, T. G. do Nascimento, L. A. M. Grillo, and C. B. Dornelas (2019). Biotechnol. Prog. 35 (6), 1–9.

    Google Scholar 

  38. K. Ali, B. Ahmed, S. Dwivedi, Q. Saquib, A. A. Alkhedhairy, and J. Musarrat (2015). PLoS ONE 10 (7), 1–20.

    Google Scholar 

  39. A. Singh, P. K. Gautam, A. Verma, V. Singh, P. M. S. Priya, S. Shivalkar, and S. K. Samanta (2020). Biotechnol. Rep. 25 (1), 1–11.

    Google Scholar 

  40. A. Ahmad, Y. Wei, F. Syed, K. Tahir, A. U. Rehman, A. Khan, S. Ullah, and Q. Yuan (2017). Microb. Pathog. 102 (1), 133–142.

    CAS  PubMed  Google Scholar 

  41. T. J. Silhavy, D. Kahne, and S. Walker (2010). Cold Spring Harb. Perspect. Biol. 2 (5), 1–16.

    Google Scholar 

  42. J. S. Kim, E. Kuk, K. N. Yu, et al. (2007). Nanomed. Nanotechnol. Biol. Med. 3 (1), 95–101.

    CAS  Google Scholar 

  43. M. Guzman, J. Dille, and S. Godet (2012). Nanomed. Nanotechnol. Biol. Med. 8 (1), 37–45.

    CAS  Google Scholar 

  44. R. Rajasingham, R. M. Smith, B. J. Park, J. N. Jarvis, N. P. Govender, T. M. Chiller, D. W. Denning, A. Loyse, and D. R. Boulware (2017). Lancet Infect. Dis. 17 (8), 873–881.

    PubMed  PubMed Central  Google Scholar 

  45. F. P. Gullo, S. A. Rossi, J. C. O. Sardi, V. L. I. Teodoro, M. J. S. M. Giannini, and A. M. F. Almeida (2013). Eur. J. Clin. Microbiol. Infect. Dis. 32 (11), 1377–1391.

    CAS  PubMed  Google Scholar 

  46. European Centre for Disease Prevention and Control, ECDC (2015). https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/antimicrobial-resistance-europe-2015.pdf.

Download references

Acknowledgements

The authors are grateful to the Multiuser Central Facilities (UFABC).

Funding

We would like to thank Fundação de Amparo à Pesquisa do Estado de São Paulo (Grants 2017/17275-3 and 2018/08194-2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grants 305740/2017-2, 422132/2018-7, 404815/2018-9 and 313117/2019-5) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanius Garcia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da S. Fernandes, D.G., Andrade, V.B., Lucena, L.N. et al. Cytotoxicity and Antimicrobial Properties of Photosynthesized Silver Chloride Nanoparticles Using Plant Extract from Stryphnodendron adstringens (Martius) Coville. J Clust Sci 33, 687–695 (2022). https://doi.org/10.1007/s10876-021-02011-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02011-w

Keywords

Navigation