Log in

Biosynthesis and Characterization of Gold Nanoparticles Using Zooglea ramigera and Assessment of Its Antibacterial Property

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present study, synthesis of gold nanoparticles with bacterium Zooglea ramigera was reported. The biosynthesized gold nanoparticles were spherical in shape of the size range of 4–16 nm (by transmission electron microscopy). X-ray diffraction and specific area electron diffraction analysis revealed that the biosynthesized gold nanoparticles were in a face centered cubic (fcc) crystalline phase with the crystalline size of 19 nm. It was observed that the size of gold nanoparticles was varied with the pH of the solution. The biosynthesized gold nanoparticles were investigated for its antibacterial activity. The minimum inhibition concentration and minimum bactericidal concentration methods were used for studying antibacterial property. Gold nanoparticles showed excellent antibacterial activity against Gram-positive Staphylococcus aureus, Streptococcus pyogenes and Gram-negative Pseudomonas aeruginosa, Escherichia coli bacterial pathogens. The gold nanoparticles showed anti-tuberculosis impact in investigation against Mycobacterium tuberculosis H37RV. A hypothesis for antibacterial action of gold nanoparticles was also explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Singh, M. Kumar, R. Kalaivani, S. Manikandan, and A. K. Kumarguru (2013). Bioprocess. Biosyst. Eng. 36, 407.

    Article  CAS  Google Scholar 

  2. N. F. Zonooz, M. Salouti, R. Shapouri, and J. Nasseryan (2012). J. Clust. Sci. 23, 375.

    Article  CAS  Google Scholar 

  3. M. A. Faramarzi and H. Forootanfar (2011). Colloids. Surf. B. 87, 23.

    Article  CAS  Google Scholar 

  4. A. M. Fayaz, M. Girilal, M. Rahman, R. Venkatesan, and P. T. Kalaichelvan (2011). Process Biochem. 46, 1958.

    Article  Google Scholar 

  5. Z. Sheikhloo, M. Salouti, and F. Katiraee (2011). J. Clust. Sci. 22, 661.

    Article  CAS  Google Scholar 

  6. S. Y. He, Z. R. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu (2007). Mater. Lett. 61, 3984.

    Article  CAS  Google Scholar 

  7. S. Y. He, Y. Zhang, Z. R. Gu, and N. Gu (2008). Biotechnol. Progr. 24, 476.

    Article  CAS  Google Scholar 

  8. K. B. Narayanan and N. Sakthivel (2010). Adv. Colloids Interface Sci. 156, 1.

    Article  CAS  Google Scholar 

  9. Ali D. Mubarak, N. Thajuddin, K. Jeganathan, and M. Gunasekaran (2011). Colloids Surf. B. 85, 360.

    Google Scholar 

  10. G. L. Burygin, B. N. Khlebtsov, A. N. Shantrokha, L. A. Dykman, V. A. Bogatyrev, and N. G. Khlebtsov (2009). Nanoscale Res. Lett. 4, 794.

    Article  CAS  Google Scholar 

  11. J. Y. Song, H. K. Jang, and B. S. Kim (2009). Process Biochem. 44, 1133.

    Article  CAS  Google Scholar 

  12. K. P. Kumar, W. Paul, and C. P. Sharma (2011). Process Biochem. 46, 2007.

    Article  CAS  Google Scholar 

  13. R. K. Das, N. Gogoi, and U. Bora (2011). Bioprocess. Biosyst. Eng. 34, 615.

    Article  CAS  Google Scholar 

  14. A. Mishra, S. K. Tripathy, and S. Yun (2012). Process Biochem. 47, 701.

    Article  CAS  Google Scholar 

  15. J. Sarkar, S. Ray, D. Chattopadhyay, A. Laskar, and K. Acharya (2012). Bioprocess. Biosyst. Eng. 35, 637.

    Article  CAS  Google Scholar 

  16. N. Krumov, I. P. Nochta, S. Oder, V. Gotcheva, A. Angelov, and C. Posten (2009). Chem. Eng. Technol. 32, 1026.

    Article  CAS  Google Scholar 

  17. Y. Qian, H. Yu, D. He, H. Yang, W. Wang, X. Wan, and L. Wang (2013). Bioprocess. Biosyst. Eng. doi:10.1007/s00449-013-0937-z.

    Google Scholar 

  18. L. Wen, Z. Lin, P. Gu, J. Zhou, B. Yao, G. Chen, and J. Fu (2009). J. Nanopart. Res. 11, 279.

    Article  CAS  Google Scholar 

  19. M. I. Husseiny, M. A. El-Aziz, Y. Badr, and M. A. Mahmoud (2007). Spectrochim. Acta. Part A 67, 1003.

    Article  CAS  Google Scholar 

  20. Y. Konishi, T. TSukiyama, T. Tachimi, N. Saitoh, T. Nomura, and S. Nagamine (2007). Electrochimica Acta 53, 186.

    Article  CAS  Google Scholar 

  21. A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, and M. Sastry (2003). Langmuir 19, 3550.

    Article  CAS  Google Scholar 

  22. K. Kaliamuthu, D. Venkataraman, B. R. K. P. Suresh, K. Muniasamy, B. K. Selvaraj, K. Bose, and G. Sangiliyandi (2010). Colloids. Surf. B 77, 257.

    Article  Google Scholar 

  23. S. R. Rajasree Radhika and T. Y. Suman (2012). Asian Pacific. J. Tropical Disease 2, S795.

    Google Scholar 

  24. F. Cai, J. Li, J. Sun, and Y. Ji (2011). Chem. Eng. J. 175, 70.

    Article  CAS  Google Scholar 

  25. F. K. Derakhshan, A. Dehnad, and M. Salouti (2012). Synth. React. Inorg. Met. Org. Chem. 42, 868.

    Google Scholar 

  26. P. K. Sarkar and A. K. Chaudhary (2010). J. Sci. Ind. Res. 69, 901.

    CAS  Google Scholar 

  27. P. Mukherjee, R. Bhattacharya, N. Bone, Y. K. Lee, C. R. Patra, and C. Wang (2007). J. Nanobiotechnol. 5, 1.

    Article  Google Scholar 

  28. A. Rai, A. Prabhune, and C. C. Perry (2010). J. Mater. Chem. 20, 6789.

    Article  CAS  Google Scholar 

  29. Y. Cui, Y. Zhao, Y. Tian, W. Zhang, X. Lu, and X. Jiang (2012). Biomaterials 33, 2327.

    Article  CAS  Google Scholar 

  30. N. Arshi, F. Ahmed, S. Kumar, M. S. Anwar, J. Lu, H. B. Koo, and C. G. Lee (2011). Curr. Appl. Phys. 11, S360.

    Article  Google Scholar 

  31. V. D. Badwaik, L. M. Vangala, D. S. Pender, C. B. Willis, Z. P. Aguilar, M. S. Gonzalez, R. Paripelly, and R. Dakshinamrthy (2012). Nanoscale Res. Lett. 7, 623.

    Article  Google Scholar 

  32. A. J. D. Pasqua, R. E. Mishler II, Y. L. Ship, J. C. Dabrowiak, and T. Asefa (2009). Mater. Lett. 63, 1876.

    Article  Google Scholar 

  33. N. Srivastava and M. Mukhopadhyay (2013). Powder Technol. 244, 26.

    Article  CAS  Google Scholar 

  34. S. P. Dubey, M. Lahtinen, and M. Sillanpaa (2010). Process. Biochem. 45, 1065.

    Article  CAS  Google Scholar 

  35. Y. Zhao, Y. Tian, Y. Cui, W. Liu, W. Ma, and X. Jiang (2010). J. Am. Chem. Soc. 132, 12349.

    Article  CAS  Google Scholar 

  36. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim (2000). J. Biomed. Mater. Res. 54, 662.

    Article  Google Scholar 

  37. L. A. Baeur and N. S. Birenbaun (2004). J. Mater. Chem. 14, 517.

    Article  Google Scholar 

  38. G. J. Tortora, B. R. Funke, and C. L. Case Microbiology: An Introduction, 5th ed (Pearson Education, Singapore, 2005).

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Bombay (IIT B), Mumbai, SAIF-AIIMS (All India Institute of Medical Sciences) New Delhi and Department of Metallurgical Engineering and Material Science, IIT B for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mausumi Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, N., Mukhopadhyay, M. Biosynthesis and Characterization of Gold Nanoparticles Using Zooglea ramigera and Assessment of Its Antibacterial Property. J Clust Sci 26, 675–692 (2015). https://doi.org/10.1007/s10876-014-0726-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0726-0

Keywords

Navigation