Log in

Density-Functional Theory Study on Neutral and Charged M n C2 (M = Fe, Co, Ni, Cu; n = 1–5) Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The ground-state geometrical and electronic properties of neutral and charged M n C2 (M = Fe, Co, Ni, Cu; n = 1–5) clusters are systematically investigated by density-functional calculations. The growth evolution trends of neutral and charged Fe n C2, Co n C2, Ni n C2 and Cu n C2 (n = 1–5) clusters are all from lower to higher dimensionality, while it is special for Cu n C ±2 (n = 1–5) clusters which favor planer growth model. The space directional distributions of Co and Ni indicate stronger magnetic anisotropy than that in Cu atoms. Compare with experimental data (photoelectron spectroscopy), our results are in good agreement. The interaction strengths between metal and carbon atoms in TM–C (TM = Fe, Co, Ni) clusters are comparable and are obviously larger than that in Cu–C clusters, and this interaction strengths also decrease through the sequence: cation > neutral > anion, which may be crucial in exploring the differences in the growth mechanisms of metal–carbon nano-materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. W. Castleman Jr and P. Jena (2006). PNAS. 103, 10554.

    Article  CAS  Google Scholar 

  2. E. G. Noya, R. C. Longo, and L. J. Gallego (2003). J. Chem. Phys. 119, 11130.

    Article  CAS  Google Scholar 

  3. A. C. Borin, J. P. Gobbo, and B. O. Roos (2006). Chem. Phys. Lett. 418, 311.

    Article  CAS  Google Scholar 

  4. D. Tzeli and A. Mavridis (2007). J. Chem. Phys. 126, 194304.

    Article  Google Scholar 

  5. D. J. Brugh and M. D. Morse (2002). J. Chem. Phys. 117, 10703.

    Article  CAS  Google Scholar 

  6. G. L. Gutsev and C. W. Bauschlicher Jr (2003). Chem. Phys. 291, 27.

    Article  CAS  Google Scholar 

  7. J. O. Joswig, M. Springborg, and G. Seifert (2001). Phys. Chem. Chem. Phys. 3, 5130.

    Article  CAS  Google Scholar 

  8. X. Li and L. S. Wang (1999). J. Chem. Phys. 111, 8389.

    Article  CAS  Google Scholar 

  9. K. Tono, A. Terasaki, T. Ohta, and T. Kondow (2002). J. Chem. Phys. 117, 7010.

    Article  CAS  Google Scholar 

  10. Z. X. Zhang, B. B. Cao, and H. M. Duan (2008). J. Mol. Struct. (Theochem). 863, 22.

    Article  CAS  Google Scholar 

  11. S. Baroni et al, http://www.quantum-espresso.org/.

  12. O. Diéguez, M. M. G. Alemany, C. Rey, P. Ordejón, and L. J. Gallego (2001). Phys. Rev. B. 63, 205407.

    Article  Google Scholar 

  13. M. Deshpande, D. G. Kanhere, and R. Pandey (2005). Phys. Rev. A. 71, 063202.

    Article  Google Scholar 

  14. S. Li, M. M. G. Alemany, and J. R. Cheliknowsky (2006). J. Chem. Phys. 125, 034311.

    Article  Google Scholar 

  15. S. Datta, M. Kabir, S. Ganguly, B. Sanyal, T. S. Dasgupta, and A. Mookerjee (2007). Phys. Rev. B. 76, 014429.

    Article  Google Scholar 

  16. H. Purdum, P. A. Montano, G. K. Shenoy, and T. Morrison (1982). Phys. Rev. B. 25, 4412.

    Article  CAS  Google Scholar 

  17. S. K. Loh, L. Lian, D. A. Hales, and P. B. Armentrout (1988). J. Phys. Chem. 92, 4009.

    Article  CAS  Google Scholar 

  18. D. J. Brugh and M. D. Morse (1997). J. Chem. Phys. 107, 9772.

    Article  CAS  Google Scholar 

  19. B. K. Nash, B. K. Rao, and P. Jena (1996). J. Chem. Phys. 105, 11020.

    Article  CAS  Google Scholar 

  20. G. L. Gutsev and C. W. Bauschlicher (2003). J. Phys. Chem. A. 107, 4755.

    Article  CAS  Google Scholar 

  21. A. Kant and B. Strauss (1964). J. Chem. Phys. 41, 3806.

    Article  CAS  Google Scholar 

  22. J. C. Pinegar, J. D. Langenberg, C. A. Arrington, E. M. Spain, and M. D. Morse (1995). J. Chem. Phys. 102, 666.

    Article  CAS  Google Scholar 

  23. M. D. Morse, G. P. Hansen, P. R. R. Langridge-Smith, L. S. Zheng, M. E. Geusic, D. L. Michalopoulos, and R. E. Smalley (1984). J. Chem. Phys. 80, 5400.

    Article  CAS  Google Scholar 

  24. R. S. Ram, C. N. Jarman, and P. F. Bernath (1992). J. Mol. Spectrosc. 156, 468.

    Article  CAS  Google Scholar 

  25. Z. Cao (1996). J. Mol. Struct. (Theochem). 365, 211.

    Article  CAS  Google Scholar 

  26. A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, and L. S. Wang (2005). J. Phys. Chem. A. 109, 562.

    Article  CAS  Google Scholar 

  27. M. L. McKee (1990). J. Am. Chem. Soc. 112, 2601.

    Article  CAS  Google Scholar 

  28. C. W. Bauschlicher, S. R. Langhoff, H. Partridge, and L. A. Barnes (1989). J. Chem. Phys. 91, 2399.

    Article  CAS  Google Scholar 

  29. J. W. Fan, L. Lou, and L. S. Wang (1995). J. Chem. Phys. 102, 2701.

    Article  CAS  Google Scholar 

  30. S. E. Apsel, J. W. Emmert, J. Deng, and L. A. Bloomfield (1996). Phys. Rev. Lett. 76, 1441.

    Article  CAS  Google Scholar 

  31. I. M. L. Billas, J. A. Becker, A. Châtelain, and W. A. de Heer (1993). Phys. Rev. Lett. 71, 4067.

    Article  CAS  Google Scholar 

  32. I. M. L. Billas, A. Châtelain and W. A. de Heer (1994) Science. 265, 1682.

  33. F. Ding, P. Larsson, J. A. Larsson, R. Ahuja, H. M. Duan, A. Rosén, and K. Bolton (2008). Nano. Lett. 8, 463.

    Article  CAS  Google Scholar 

  34. N. M. Bulgakova, A. V. Bulgakov, J. Svensson, and E. E. B. Campbell (2006). Appl. Phys. A. 85, 109.

    Article  CAS  Google Scholar 

  35. M. Keidar and A. M. Waas (2004). Nanotechnology. 15, 1571.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 10864005, 11265015) and the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, China. Thanks Dr. Qun **g, Dr. Ying Wang in **njiang Technical Institute of Phyics & Chemistry(CAS) for their useful help and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Zhang or H. M. Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Cao, B.B., Chen, C. et al. Density-Functional Theory Study on Neutral and Charged M n C2 (M = Fe, Co, Ni, Cu; n = 1–5) Clusters. J Clust Sci 24, 197–207 (2013). https://doi.org/10.1007/s10876-012-0543-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0543-2

Keywords

Navigation