Log in

Crystal and Molecular Structures of Four Organic Acid–Base Adducts from Hexamethylenetetramine, N,N,N,N-Tetramethylethylenediamine, and Organic Acids

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The preparation, X-ray crystal structure, Fourier Transform infrared (FTIR) spectroscopy, and elemental analysis of the four compounds based on hexamethylenetetramine, and N, N, N, N-tetramethylethylenediamine are reported. XRD and FTIR analysis indicated that the compound 1 is a cocrystal, while 2-4 are organic salts. The compound 1 crystallizes in the triclinic, space group P-1, with a = 7.9280(6) Å, b = 11.1452(9) Å, c = 18.2226(16) Å, α = 80.9580(10)°, β = 86.285(2)°, γ = 70.1740(10)°,V = 1495.8(2) Å3, Z = 2. The compound 2 crystallizes in the monoclinic, space group P2(1)/c, with a = 11.4207(9) Å, b = 10.1095(6) Å, c = 14.9048(12) Å, α = 90°, β = 96.2950(10)°, γ = 90°, V = 1710.5(2) Å3, Z = 4. The compound 3 crystallizes in the Triclinic, space group P-1, with a = 7.6542(6) Å, b = 12.2296(11) Å, c = 13.9565(12) Å, α = 67.6900(10)°, β = 85.571(2)°, γ = 71.8270(10)°, V = 1147.09(17) Å3, Z = 2. The compound 4 crystallizes in the monoclinic, space group P2(1)/c, with a = 6.9377(5) Å, b = 12.0824(9) Å, c = 12.1639(11) Å, α = 90°, β = 94.6840(10)°, γ = 90°, V = 1016.22(14) Å3, Z = 2. In this work, the hexamethylenetetramine at 12 formed two, three and four classical hydrogen bonds, respectively. Each NH+ at the diprotonated N, N, N, N-tetramethylethylenediamine generated one or two hydrogen bonds. In addition to the classical hydrogen bonds, the auxiliary expanding interactions as CH–O, CH2–O, CH3–O, CH2···Cπ, CH2-π and CH3-π also play important roles in the structure extension. In conclusion, we have shown that 3D structures can be constructed by the collective non-covalent interactions.

Graphical Abstract

In the four prepared supramolecular assemblies there are plenty of weak nonbonding interactions such as directional hydrogen bonds of O–H···N, N–H···O, O–H···O, N–H···S, intra- and interchain CH–O, CH2···O, CH3–O, CH2···Cπ, CH2-π and CH3-π interactions. Due to these collective weak interactions, all the compounds displayed the 3D framework structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stahly GP (2009) Cryst Growth Des 9:4212

    Article  CAS  Google Scholar 

  2. Desiraju GR (2007) Angew Chem Int Ed 46:2

    Article  Google Scholar 

  3. Bond AD (2007) CrystEngComm 9:833

    Article  CAS  Google Scholar 

  4. Lemmerer A, Báthori NB, Bourne SA (2008) Acta Cryst B64:780

    Article  Google Scholar 

  5. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  6. Aakeröy CB, Beatty AM (2001) Aust J Chem 54:409

    Article  Google Scholar 

  7. Burrows AD (2004) Struct Bonding 108:55

    Article  CAS  Google Scholar 

  8. Braga D, Maini L, Polito M, Grepioni F (2004) Struct Bonding 111:1

    Article  CAS  Google Scholar 

  9. Holman KT, Pivovar AM, Swift JA, Ward MD (2001) Acc Chem Res 34:107

    Article  CAS  Google Scholar 

  10. Shan N, Bond AD, Jones W (2002) Cryst Eng 5:9

    Article  CAS  Google Scholar 

  11. Bhogala BR, Basavoju S, Nangia A (2005) Cryst Eng Commun 7:551

    Article  CAS  Google Scholar 

  12. MacDonald JC, Dorrestein PC, Pilley MM (2001) Cryst Growth Des 1:29

    Article  CAS  Google Scholar 

  13. Highfill ML, Chandrasekaran A, Lynch DE, Hamilton DG (2002) Cryst Growth Des 2:15

    Article  CAS  Google Scholar 

  14. Vishweshwar P, Nangia A, Lynch VM (2002) J Org Chem 67:556

    Article  CAS  Google Scholar 

  15. Nichol GS, Clegg W (2009) Cryst Growth Des 9:1844

    Article  CAS  Google Scholar 

  16. Men YB, Sun JL, Huang ZT, Zheng QY (2009) Cryst Eng Commun 11:978

    Article  CAS  Google Scholar 

  17. Desiraju GR (1989) Crystal engineering, the design of organic solids. Elsevier, Amsterdam

    Google Scholar 

  18. Coupar PI, Glidewell C, Ferguson G (1997) Acta Cryst B53:521

    Article  CAS  Google Scholar 

  19. Gardon M, Pinheiro CB, Chapuis G (2003) Acta Cryst B59:527

    Article  CAS  Google Scholar 

  20. Ghosh K, Datta M, Fröhlich R, Ganguly NC (2005) J Mol Struct 737:201

    Article  CAS  Google Scholar 

  21. Bruyn P, Gable RW, Potter AC, Solomon DH (1996) Acta Cryst C 52:466

    Article  Google Scholar 

  22. Daka P, Wheeler KA (2006) Acta Cryst E62:o5477

    Google Scholar 

  23. Feng H, Zhang HM, Tu B, ** ZM (2006) Acta Cryst E62:o3122

    Google Scholar 

  24. Li W, Zhang JP, Tong ML, Chen XM (2001) Aus J Chem 54:213

    Article  Google Scholar 

  25. MacLean EJ, Glidewell C, Ferguson G, Gregson RM, Lough AJ (1999) Acta Cryst C55:1867

    CAS  Google Scholar 

  26. Zakaria CM, Ferguson G, Lough AJ, Glidewell C (2003) Acta Cryst B59:118

    Article  CAS  Google Scholar 

  27. Mak TCW (1965) J Chem Phys 43:2799

    Article  CAS  Google Scholar 

  28. Gaillard VB, Chapuis G, Dusek M, Petříček V (1998) Acta Cryst A54:31

    Article  CAS  Google Scholar 

  29. Hostettler M, Birkedal H, Gaillard M, Chapuis G, Schwarzenbach D, Bonin M (1999) Acta Cryst B55:448

    Article  CAS  Google Scholar 

  30. Coupar PI, Ferguson G, Glidewell C, Meehan PR (1997) Acta Cryst C 53:1978

    Article  Google Scholar 

  31. Gaillard VB, Paciorek W, Schenk K, Chapuis G (1996) Acta Cryst B52:1036

    Article  CAS  Google Scholar 

  32. Jordan TH, Mak TCW (1970) J Chem Phys 52:3790

    Article  CAS  Google Scholar 

  33. Nagapandiselvi P, Baby C, Gopalakrishnan R (2014) RSC Adv 4:22350

    Article  CAS  Google Scholar 

  34. Adam AMA, Refat MS, Sharshar T, Heiba ZK (2012) Spectrochim Acta Part A Mol Biomol Spectrosc 95:458

    Article  CAS  Google Scholar 

  35. Bruno G, Rotondo A, Luca LD, Sammartano S, Nicoló F (2004) Acta Cryst C60:o287

    CAS  Google Scholar 

  36. ** SW, Liu B, Chen WZ (2007) Chin J Struct Chem 26:287

    CAS  Google Scholar 

  37. ** SW, Chen WZ (2007) Chin J Inorg Chem 23:270

    CAS  Google Scholar 

  38. ** SW, Wang DQ, Wang XL, Guo M, Zhao QJ (2008) J Inorg Organomet Polym 18:300

    Article  CAS  Google Scholar 

  39. Bruker (2004) SMART and SAINT. Madison, Bruker AXS

    Google Scholar 

  40. Sheldrick GM (2000) SHELXTL, Structure Determination Software Suite, version 6.14. Bruker AXS, Madison

  41. Su KM, Li ZH (2007) Acta Cryst E63:o4512

    Google Scholar 

  42. Jiang RW, Ming DS, But PPH, Mak TCW (2000) Acta Cryst C56:594

    CAS  Google Scholar 

  43. Dong FY, Wu J, Tian HY, Ye QM, Jiang RW (2011) Acta Cryst E67:o3096

    Google Scholar 

  44. Lemmerer A (2011) Acta Cryst B67:177

    Article  Google Scholar 

  45. Zhao JP, Khan IA, Fronczek FR (2011) Acta Cryst E67:o316

    Google Scholar 

  46. Kaur R, Gautam R, Cherukuvada S, Row TNG (2015) IUCrJ 2:341

    Article  CAS  Google Scholar 

  47. Lough AJ, Wheatley PS, Ferguson G, Glidewell C (2000) Acta Cryst B56:261

    Article  CAS  Google Scholar 

  48. Najafpour MM, Holynska M, Lis T (2008) Acta Cryst E64:o985

    Google Scholar 

  49. ** SW, Wang DQ, Liang SS, Chen SJ (2012) J Chem Crystallogr 42:759

    Article  CAS  Google Scholar 

  50. Barnes HA, Barnes JC (1996) Acta Cryst C52:731

    CAS  Google Scholar 

  51. McKee V, Najafpour MM (2007) Acta Cryst E63:o741

    Google Scholar 

  52. Baughman RG, Shane RS, McCormick JM (2011) Acta Cryst E67:m1

    Google Scholar 

  53. Smith G, Wermuth UD (2013) Acta Cryst C69:538

    Google Scholar 

  54. Sundaralingam M, Jensen LH (1965) Acta Crystallogr 18:1053

    Article  CAS  Google Scholar 

  55. Simith G, Hartono AW, Wermuth UD, Healy PC, White JM, Rae AD (2005) Aust J Chem 58:47

    Article  Google Scholar 

  56. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed 34:1555

    Article  CAS  Google Scholar 

  57. Liu ML, Chen ZQ (2012) Acta Cryst E68:o1745

    Google Scholar 

Download references

Acknowledgments

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14B010006, the Education Office Foundation of Zhejiang Province under Grant No. Y201017321, the National Training Programs of Innovation and Entrepreneurship of China for Undergraduates under Grant No. 201410341022, the Open Foundation of Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University under Grant No. 2015CUFB02, Zhejiang Provincial Municipal Science and Technology Project under Grant No. 2014C32040, Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14E030016, Preresearch Project of Research Center of Biomass Resource Utilization, Zhejiang A & F University under Grant No. 2013SWZ03-2, and the Open Fund of Zhejiang Provincial Top Key Discipline of Forestry Engineering under Grant No. 2014LYGCZ017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen **.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., **, S., Tao, Z. et al. Crystal and Molecular Structures of Four Organic Acid–Base Adducts from Hexamethylenetetramine, N,N,N,N-Tetramethylethylenediamine, and Organic Acids. J Chem Crystallogr 46, 188–202 (2016). https://doi.org/10.1007/s10870-016-0647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-016-0647-x

Keywords

Navigation